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Abstract

Thermal phase curves of short-period planets on circular orbits provide joint constraints on the fraction of incoming
energy that is reflected (Bond albedo) and the fraction of absorbed energy radiated by the night hemisphere (heat
recirculation efficiency). Many empirical studies of hot Jupiters have implicitly assumed that the dayside is the
hottest hemisphere and the nightside is the coldest hemisphere. For a given eclipse depth and phase amplitude, an
orbital lag between a planet’s peak brightness and its eclipse—a phase offset—implies that planet’s nightside emits
greater flux. To quantify how phase offsets impact the energy budgets of short-period planets, we compile all
infrared observations of the nine planets with multi-band eclipse depths and phase curves. Accounting for phase
offsets shifts planets to lower Bond albedo and greater day–night heat transport, usually by 1σ. For WASP-12b,
the published phase variations have been analyzed in two different ways, and the inferred energy budget depends
sensitively on which analysis one adopts. Our fiducial scenario supports a Bond albedo of -

+0.27 0.13
0.12, significantly

higher than the published optical geometric albedo, and a recirculation efficiency of -
+0.03 0.02

0.07, following the trend
of larger day–night temperature contrast with greater stellar irradiation. If instead we adopt the alternative analysis,
then WASP-12b has a Bond albedo consistent with zero and a much higher recirculation efficiency. To definitively
determine the energy budget of WASP-12b, new observational analyses will be necessary.
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1. Introduction

Short-period planets on circular orbits are expected to have
permanent day and night hemispheres. Only the dayside
absorbs stellar radiation, but if the planet has an atmosphere,
then some energy can be moved to the nightside. The process
can be described by Bond albedo, Î [ ]A 0, 1B , the fraction of
incident flux the planet reflects, and heat recirculation
efficiency, e Î [ ]0, 1 , the fraction of absorbed energy trans-
ported from day to night. One can constrain both parameters
using the planet’s day and night effective temperatures, Td and
Tn, respectively.

A notional thermal phase curve for a planet is shown by the
orange line in Figure 1. The flux varies because one sees
different planetary phases over time, from the nightside at
transit to the dayside at eclipse. By combining the eclipse
depth, phase variations, transit depth, and stellar spectrum, one
can infer the planet’s day and night brightness temperatures. By
combining brightness temperatures at many wavelengths, one
can estimate effective temperatures of a planet’s day and night
hemispheres.

Many previous studies of hot Jupiters have neglected phase
offsets, instead assuming that the dayside is the hottest
hemisphere and the nightside is the coolest (Cowan & Agol
2011b; Perez-Becker & Showman 2013; Schwartz &
Cowan 2015; Komacek et al. 2017). This is denoted by the
gray line in Figure 1. Because those authors used the actual
eclipse depths, the dayside estimates were accurate; but by
adopting the published phase amplitudes and assuming that the
nightside was the coolest hemisphere, they underestimated the
nightside brightness and hence temperature.

In Section 2.1, we review the compiled data for our energy
budget model, including new observations at thermal wave-
lengths. In Section 2.2, we describe how we use phase offsets
in this model, then fit the Bond albedo and recirculation
efficiency of nine short-period giant planets. We discuss our
results and conclude in Section 3.

2. Energy Balance

For transiting planets, one infers Bond albedo and heat
recirculation efficiency from infrared observations by estimat-
ing effective temperatures for the planet’s day and nightsides.
This is described by Equations(4)–(6) of Cowan & Agol
(2011b), which were used and expanded on by Schwartz &
Cowan (2015).

2.1. Data

Data for these studies were collected by reviewing published
papers and searching both exoplanet.eu (Schneider et al. 2011)
and exoplanets.org (Han et al. 2014). We start with the six planets
in Table2 of Schwartz & Cowan (2015) that have thermal
eclipses and phase amplitudes (at wavelengths longward of
0.8 μm): HD149026b, HD189733b, HD209458b, WASP-12b,
WASP-18b, and WASP-43b. Then we add WASP-14b (Wong
et al. 2015), HAT-P-7b, and WASP-19b (Wong et al. 2016) to
our sample. We also incorporate new data from Zhou et al.
(2015), Evans et al. (2015), and Line et al. (2016).
We collect first-order phase offsets (Sections 2.2 and 2.2.1)

from Knutson et al. (2009a, 2009b) and Wong et al. (2015,
2016). Knutson et al. (2009a) concluded the offset they found
was not statistically significant, so we use their largest
uncertainty (72°±61°). Phase offsets through second order
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come from Cowan et al. (2012), Knutson et al. (2012), Maxted
et al. (2013), Zellem et al. (2014), and Stevenson et al.
(2014c, 2017). However, the second-order components in
Zellem et al. (2014) were found to be unnecessary, and those at
4.5micron in Cowan et al. (2012) are disputed, so we use
neither in our fits. Also, Cowan et al. (2012) reported two sets
of fit parameters for WASP-12b based on different models for
detector systematics7—we use parameters from their preferred
polynomial model but test the other scenario in Section 3.1.8

All nine planets in our study have non-zero offsets in at least
one waveband.

2.2. Model

We take an energy balance approach to interpreting thermal
phase variations (e.g., Cowan & Agol 2011b): we compare the
radiation going into and coming out from a planet to infer bulk
energetics of that planet’s atmosphere.

For our study, we use the energy balance model described in
Section3.1 of Schwartz & Cowan (2015), which accounts for
uncertainties in system parameters, as well as reflected light
contamination, meridional heat transport, and other sources of
uncertainty. Those authors treated stars as blackbodies; we
estimate better stellar brightness temperatures for each
observation by using BT-NextGen spectra (Allard
et al. 2012). Then we use our compiled data to calculate the
relative intensity of planets and their host stars at each observed
wavelength. In Cowan & Agol (2011b) and Schwartz & Cowan
(2015), this nightside intensity ratio, ψn(λ), is defined as

y l
d d

d
=

-( ) ( ), 1n
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tr

where δecl is the eclipse depth, δvar is the peak-to-trough phase
amplitude of the full light curve, and δtris the transit depth.

This is exact only when an observation has no phase offset
(e.g., gray curve in Figure 1).
More generally, one can model the flux Fp from a planet as a

Fourier series:
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where f is the planet’s orbital phase (0° at eclipse), and δk and
fk are the phase amplitude and offset of order k, respectively.
Six of the ten published papers with phase offsets use phase
curves like this to model their data; we convert parameters from
the other studies into the form of Equation (2). We then modify
Equation (1) to
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For a given eclipse depth and phase amplitude, this increases
the brightness of a planet’s nightside when there is an offset
and reduces to Equation (1) otherwise (cf. dashed orange and
solid gray curves in Figure 1).
If zonal heat advection is the dominant process governing

thermal phase curves, then there should be a one-to-one
correspondence between the amplitudes and phase offsets of
bolometric phase curves. This was first noted by Crossfield
(2015) and is discussed in Appendix A. In practice, though, we
do not yet have bolometric phase curves for any exoplanets:
<50% of the dayside flux and much less of the nightside flux
has been captured for most hot Jupiters (Section2.3 of
Schwartz & Cowan 2015). Moreover, we suspect that clouds
and magnetic fields might influence hot Jupiter phase curves
(Parmentier et al. 2016; Rogers 2017). We therefore take the
published phase amplitudes and offsets at face value and do not
worry about whether they are consistent with the zonal
advection hypothesis. However, we do establish that the
published uncertainties on phase amplitudes and offsets are
self-consistent (Appendix B).

Figure 1. Light curves of a transiting planet with a given eclipse depth and phase amplitude. The horizontal dotted black line denotes the unobscured stellar flux. The
dashed orange curve has a non-zero phase offset. If one neglects this offset, then one is instead adopting the gray curve, as was done in previous energy budget studies
(e.g., Schwartz & Cowan 2015). To the lowest order, the planet’s nightside flux is the eclipse depth minus the peak-to-trough phase amplitude, but this is only exact if
the planet exhibits no phase offset. For a fixed eclipse depth and phase amplitude, accounting for a non-zero phase offset (dashed orange curve) will lead one to infer
greater nightside flux.

7 Stevenson et al. (2014a) fit eclipse depths for WASP-12b but not phase
parameters, so we do not use their values in our analysis.
8 WASP-12 has binary companion stars that affect photometry of the system
(Bechter et al. 2014). We use dilution factors from Stevenson et al. (2014b) to
correct observations of WASP-12b when appropriate.
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2.2.1. Second-order Phase Variations

The light curves in Figure 1 are composed of multiple modes,
i.e., several δk are non-zero in Equation (2). When we use the
semi-analytic energy balance model of Cowan & Agol (2011a) to
calculate a planet’s flux (Appendices A and C), the resulting light
curves always have non-zero harmonics. We fit these synthetic
light curves up to fourth order and find that δ2/δ1≈0.1–0.2,
δ3≈0 (as expected for edge-on orbits; Cowan et al. 2013), and
δ4/δ10.01. We repeat these fits on light curves of HD189733b,
HD209458b, and WASP-43b from a global circulation model
(Zhang et al. 2017) and obtain very similar results.

Published phase curves have δ2/δ10.15 (e.g., Maxted
et al. 2013; Stevenson et al. 2017). Only for the 4.5 μm phase
curve of WASP-12b is the second-order amplitude greater
(∼0.6; Cowan et al. 2012), but the authors note that it could not
be due to planetary temperature patterns, so we neglect this
second-order component. In any case, we use all published
phase amplitude and offset data for Equation (3) so that our
results are as robust as possible. First-order phase curves
should be accurate to ∼15%, while those reported to second
order should be good to ∼1%.

2.3. The Effect of Phase Offsets

We reproduce two figures that have previously been used to
explore trends in the energy balance of short-period planets, but
now we account for phase offsets.

Figure 2 is similar to Figure1 from Perez-Becker &
Showman (2013). For all infrared observations with a phase
offset, we plot the flux contrast when neglecting those offsets
as dark markers with 1σ uncertainties. If accounting for the
offset decreases the contrast by at least 0.05, we also show an
orange marker. Most nightside fluxes are only modestly
affected by phase offsets. But, the 3.6μm contrasts for
HD189733b and WASP-12b change significantly when phase
offsets are accounted for. Because Perez-Becker & Showman
(2013) ignored phase offsets (their data looks like the gray
symbols in our plot), they over-estimated the day–night
temperature contrast for those planets.

Figure 3 is similar to Figure5 of Schwartz & Cowan (2015).
To determine the Bond albedo and recirculation efficiency of each
planet, we use either Equations (1) or (3) to calculate dayside and
nightside brightness temperatures of planets. Next, we estimate a
planet’s day and nightside effective temperatures as the weighted
average of its brightness temperatures. We then calculate χ2 on a
grid of AB and ε. The 1σ regions are shown in Figure 3 and
colored by irradiation temperature. Following Figure 1, light solid
curves do not account for phase offsets while dashed curves do.
We list our fit parameters for the dashed regions in Table 1 and
the corresponding changes from the light solid regions in Table 2.
The dayside and nightside temperatures we report are all apparent
effective temperatures: the true effective temperatures of the day
and night hemispheres are likely lower and higher, respectively, as
discussed in Appendix C.

3. Discussion and Conclusions

In Figure 3, nightside temperatures increase toward the upper
left. As expected, our fits accounting for phase offsets move to the
upper left, with lower Bond albedo and higher day–night heat
transport (updated parameters listed in Table 1). In most cases, the
more accurate energy budget constraints agree at the 1σ level with
previous estimates that neglected phase offsets (Table 2).9

The exception is the inferred nightside temperature for
WASP-12b, which Table 2 shows is significantly hotter when
including phase offsets. Our fitted Bond albedo for WASP-12b
is also significantly higher than the planet’s optical geometric
albedo reported by Bell et al. (2017).10 This is the same tension
Schwartz & Cowan (2015) found when analyzing infrared and
optical measurements of HD189733b and HD209458b.
For WASP-43b, we find that the upper limit on its nightside

temperature increases by about an order of magnitude, up from
Tn<39 K at 1σ when neglecting phase offsets.11 Besides

Figure 2. Following Perez-Becker & Showman (2013), we plot normalized day–night flux contrast, (Fday − Fnight)/Fday, vs. irradiation temperature, * *ºT T R a0 ,
where T* is the stellar effective temperature, R* is the stellar radius, and a is the planet’s semimajor axis. Each marker represents a published observation with a phase
offset, and the vertical lines show 1σ uncertainties (if larger than the marker). The horizontal dotted line shows where the nightside emits no flux. We label the nine
planets in our sample and shift markers horizontally for clarity. Dark markers with gray lines show the flux contrasts when neglecting phase offsets (Perez-Becker &
Showman 2013), while orange symbols show the more accurate contrasts accounting for offsets—we plot the corrected flux contrast if it changes by �0.05. For most
observations, inferred nightside flux only changes a little after including phase offsets, but in a few cases it increases more significantly.

9 Although we used second-order phase curves where available, we obtain
similar results using only first-order phase curves.
10 Bell et al. (2017) cited the dayside temperature and Bond albedo for
WASP-12b from an earlier version of this manuscript.
11 Since the submission of this manuscript, Keating & Cowan (2017)
suggested that the nightside temperature of WASP-43b is in fact in line with
HD209458b.
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WASP-12b and WASP-43b, HD189733b has the most sig-
nificant changes to its energy budget constraints in Table 2.

3.1. Energy Budget of WASP-12b

The dashed region for WASP-12b in Figure 3 agrees well
with Figure 10 from Cowan et al. (2012). This alone is
interesting: we use more eclipse measurements of the planet,
correct for binary companion stars diluting those measurements
(Stevenson et al. 2014b), take higher-order phase components
into account, and use phase offsets.

As stated in Section 2.1, Cowan et al. (2012) fit their light
curves of WASP-12b with two models for detector systematics,
polynomial and Gaussian decorrelation. In particular, the

polynomial model gives a significantly larger phase amplitude
at 4.5μm, plus a shallower eclipse depth and much larger
phase offset (−53° ± 7° versus 0° ± 29°) at 3.6μm. We use
the polynomial values because the authors argue that their
Gaussian decorrelation method removes a lot of the planet’s
phase signal. But it is difficult to decide which systematics
model works better using just goodness-of-fit. We therefore fit
an alternate energy budget for WASP-12b.
We repeat our analysis on WASP-12b using parameters from

the Gaussian decorrelation model in Cowan et al. (2012) and
infer Tn=2190±172 K, a much hotter nightside than
in Table 1. This puts the planet above WASP-14b in
Figure 3, with AB=0+0.1 and e = -

+0.52 0.12
0.13 at 1σ. In this case,

WASP-12b does not follow the expectation that hotter planets
have much shorter radiative times and so larger day–night

Figure 3. Fitted Bond albedo (AB) and day–night heat recirculation efficiency (ε) for nine short-period planets with infrared eclipse and phase data, improved from
Schwartz & Cowan (2015). We also show the apparent bolometric flux ratio for a planet’s night and dayside on the right axis (Appendix C). Light solid curves show
the 1σ regions when neglecting phase offsets, while dashed curves show the more accurate energy budgets accounting for offsets. The color scale shows irradiation
temperature; shading is inversely related to the area of the 1σ region such that tighter fits are darker. The solid curve for WASP-43b is on the bottom axis (its nightside
has zero flux if phase offsets are neglected). Every inferred Bond albedo and recirculation efficiency changes by 1σ when accounting for phase offsets (but see
Section 3.1).

Table 1
Fitted Energy Budgets Accounting for Phase Offsets

Planet Td (K) Tn (K) AB ε

HAT-P-7b 2612±93 1236±178 -
+0.25 0.13

0.11
-
+0.12 0.05

0.08

HD 149026b 1737±75 1127±251 -
+0.43 0.19

0.13
-
+0.37 0.22

0.29

HD 189733b 1163±37 953±44 -
+0.41 0.07

0.07
-
+0.69 0.1

0.09

HD 209458b 1483±51 1058±92 -
+0.46 0.11

0.08
-
+0.49 0.14

0.15

WASP-12b 2939±94 962±354 -
+0.27 0.13

0.12
-
+0.03 0.02

0.07

WASP-14b 2193±116 1262±95 -
+0.14 0.14

0.16
-
+0.25 0.08

0.09

WASP-18b 2905±111 662±378 -
+0.16 0.16

0.15 +0.01 0.03

WASP-19b 2407±82 1069±200 -
+0.3 0.12

0.1
-
+0.1 0.06

0.09

WASP-43b 1667±56 <430 (1σ) -
+0.27 0.18

0.15 +0 0.01

Table 2
Change in Parameters after Using Phase Offsets

Planet ΔTn (K) ΔAB Δε

HAT-P-7b 146±246 −0.02±0.17 0.04±0.08
HD 149026b 214±333 −0.06±0.2 0.19±0.3
HD 189733b 56±62 −0.06±0.09 0.1±0.13
HD 209458b 64±157 −0.03±0.14 0.09±0.22
WASP-12b 646±487 −0.02±0.17 0.03±0.05
WASP-14b 27±134 0±0.22 0.02±0.12
WASP-18b 7±516 −0.01±0.22 0±0.02
WASP-19b 72±290 −0.01±0.15 0.02±0.1
WASP-43b <432 (1σ) 0±0.23 0±0.01
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contrasts (Cowan & Agol 2011b; Cowan et al. 2012), nor
theoretical predictions (Perez-Becker & Showman 2013;
Komacek & Showman 2016; Komacek et al. 2017). Instead,
the Gaussian decorrelation parameters suggest the planet has a
moderate recirculation efficiency despite its high irradiation
temperature.

If we remain agnostic about which analysis of the extant data
is correct, then WASP-12b’s nightside temperature is around
1400–1800K with a Bond albedo of 0.06–0.22 and a heat
recirculation efficiency of 0.21–0.34. New phase curves of the
WASP-12 system are needed to determine which of the cases
above is most accurate.

The authors thank the anonymous referee for their thorough
comments, Kevin B. Stevenson (U. Chicago) for sharing
preliminary Spitzer Space Telescope data of WASP-43b, and
Emily Rauscher (U. Michigan) for sharing GCM light curves of
three planets from an in-prep manuscript. The authors also thank
Michael Zhang and Heather Knutson (Caltech) for helpful
discussions about and improvements to the energy balance model.
J.C.S. acknowledges funding as a Graduate Research Trainee at
McGill University. This research has made use of the Exoplanet
Orbit Database and the Exoplanet Data Explorer at exoplanets.org.

Appendix A
A One-to-one Relation between Phase Offsets

and Amplitudes

For a planet on a circular orbit with zonal advection of heat,
there is a one-to-one relation between bolometric phase offset
and bolometric flux contrast because both depend on a single
parameter, recirculation efficiency. To demonstrate this, we use
the semi-analytic energy balance model of Cowan & Agol
(2011a) and test cases ∼0.02 apart in ε assuming no reflected
light (see Appendix C). For each case, we calculate the phase
offset and apparent temperature contrast of the disk-integrated
flux, as well as for individual gas parcels, as shown in Figure 4.
Our results agree qualitatively with three-dimensional general
circulation models of super-Earths and mini-Neptunes tested by
Zhang & Showman (2017), and they indeed should be
universal if heat is zonally advected in the absence of clouds.

A planet’s temperature contrast is strongly affected at very low
recirculation (dark markers in Figure 4) because it only takes a
little heat to raise the temperature of a cold nightside. Although
the behavior of individual gas parcels (diamonds) and the disk-
integrated light curves (circles) are qualitatively similar, there are
two quantitative differences. First, disk integration reduces
temperature contrast, as expected given the low-pass nature of
the convolution (Cowan & Agol 2008; Cowan et al. 2013). But
disk integration also increases the phase offset: the hottest disk-
integrated region of the planet is East of the hottest gas parcel
because parcels heat faster than they cool (Figure1 of Cowan &
Agol 2011a). This means the hot spot is almost never at the
center of the planet’s brightest hemisphere—one cannot use hot
spot offsets and phase offsets interchangeably.

Although the one-to-one correspondence between phase
amplitudes and phase offsets was not seen in photometric phase
curves (Crossfield 2015), future missions that measure a greater
fraction of the thermal emission from short-period planets should
allow us to test this prediction directly (e.g., James Webb Space
Telescope, FINESSE). As noted by Crossfield (2015), deviations
from this one-to-one relation would suggest that additional
physics—clouds, magnetic fields, etc.—are shaping hot Jupiter

phase curves (Agúndez et al. 2012; Perez-Becker & Showman
2013; Rauscher & Menou 2013; Showman & Kaspi 2013).

Appendix B
Phase Curve Precision

Energy budget estimates like those in Table 1 are only as
accurate as the phase amplitudes and offsets that constitute them.
At a particular order (recall Equation (2)), one can express the
phase curve component Fk as the sum of a cosine and sine:

d f d fµ + ( )F k kcos sin , 4k dn ew

where δdn is the day-to-night phase amplitude and δew is the
east-to-west amplitude (we drop the k subscripts for clarity).
The two amplitudes are independent variables by Fourier
analysis, and their measured uncertainties, σdn and σew, should
be similar for full-orbit observations of phase curves. We test
this by fitting toy models of phase curves with Equation (4) and
find that our amplitude uncertainties are generally within a
factor of 2.5. For the published phase curves that used the
parameterization above, σdn and σew differ by 16%–63% in
Knutson et al. (2012), <4% in Maxted et al. (2013), and 29%
in Zellem et al. (2014), all of which are reasonable.

Figure 4. The phase offset vs. apparent temperature contrast, (Tmax − Tmin)/T0,
for recirculation efficiencies in ∼0.02 increments (color scale) according to the
energy balance model of Cowan & Agol (2011a). This is an upgraded version
of the left panel of Figure9 from Crossfield (2015), which presented an
approximate curve for gas parcels interpolated from only a few cases. As the
one-to-one relation we predict is technically only valid for bolometric phase
curves, we omit current observational constraints. Both marker types represent
bolometric flux: diamonds show values for individual gas parcels, while circles
are for disk-integrated flux. Markers are paired by color; we join select pairs
with solid lines. In the radiative equilibrium limit (darkest circle, ε = 0), the
disk-integrated temperature contrast is Td=T0(2/3)

1/4, as expected. In the
limit of efficient zonal heat transport (lightest diamond, e  1), the phase
offset of the hot spot approaches p » - ( )cos 1 71 . 41 . Disk integration
decreases the temperature contrast, but increases the phase offset. This energy
balance model predicts a one-to-one correspondence between bolometric phase
amplitudes and offsets, which will be tested with upcoming observations that
capture a large fraction of the flux from short-period exoplanets.
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Alternatively, the flux component of a planetary system can
be parameterized by a cosine with a phase offset:

d f fµ -[ ( )] ( )F kcos . 5k k k

This parameterization has the unfortunate property that the
uncertainty on fk diverges when δk is small. This makes it non-
trivial to determine whether a given phase amplitude and offset
are appropriately precise.12 The majority of published studies
parameterize planetary flux this way.

In order to evaluate the uncertainties σdn and σew, we
differentiate the identities δdn=δk cos kfk and δew=δk sin kfk,
and rearrange them to obtain

s s s d s f- = -d f[ ( ) ] ( )k kcos 2 , 6k kdn
2

ew
2 2 2

where σδ and σf are the uncertainties on δk and fk, respectively.
Because we expect its left-hand side to be close to zero,

Equation (6) suggests that we compare σδ to the product kδkσf
for our compiled data, shown in Figure 5. These quantities are
reasonable for almost every published observation (i.e., the
markers are close to the dashed line). The only outlier is
HD149026b at 8.0μm (Knutson et al. 2009a), but this is
unsurprising as their half-orbit phase curve did not capture the
phase curve’s peak, so the reported amplitude was merely the
observed change in flux.

In short, published phase amplitudes and phase offsets have
self-consistent uncertainties, which suggests that including
them improves the accuracy of our energy budgets.

Appendix C
Apparent versus Effective Temperatures

The view of a planet will affect the disk-integrated
bolometric flux one measures, and hence the effective
temperature one infers. Visibility is highest at the center of
the planetary disk and lowest along the limb; the visibility is
zero on the far side of the planet (Cowan et al. 2013). If a
planet’s hottest locations are directly facing the observer, then
that hemisphere will likely appear hotter than its actual
effective temperature, and vice versa.
Light curve inversion (Cowan & Agol 2008) provides a

means to correct for longitudinal inhomogeneities in brightness
and temperature, but this method has not been used to interpret
most phase curves. Eclipse mapping can in principle constrain
the meridional temperature gradients of the dayside, but so far
it has only been applied to one planet in a single spectral band
(de Wit et al. 2012; Majeau et al. 2012).
The spatial inhomogeneity of short-period planets therefore

presents a challenge to the analysis and interpretation of phase
curves: strictly speaking, we need to know the hemispherical
effective temperatures to constrain Bond albedo and day–night heat
transport, but we can only measure apparent temperatures from a
light curve. While apparent temperatures of exoplanets have been
discussed before (e.g., Fortney et al. 2006), to our knowledge they
have not been explicitly compared to effective temperatures.
For our analysis, we use the semi-analytic energy balance

model of Cowan & Agol (2011a). In particular, we consider an
idealized hot Jupiter that is on a circular orbit, has no internal
heat, reflects no light, and has eastward winds. We numerically
solve for this planet’s steady-state bolometric flux on a grid in
latitude and longitude. Next, we assume an equatorial observer
and integrate this flux two ways at each orbital phase. In one
case, we include the observer’s visibility of the planet and so
calculate an apparent temperature for that hemisphere,

p
W W W= ⎜ ⎟⎛

⎝
⎞
⎠∮ ( ) ( ) ( )T V T d

1
, 7app

4

1
4

where W denotes a location on the surface of the sphere.
In the other case, we use the full flux from every grid point that

is visible at all, calculating the hemisphere’s effective temperature,

òp
W W= ⎜ ⎟⎛

⎝
⎞
⎠( ) ( )T T d

1

2
, 8eff

4

1
4

where the integral is only performed on the visible hemisphere
of the planet.
Figure 6 shows the temperature ratio for four planetary

hemispheres, or orbital phases, as a function of recirculation
efficiency.13 Clearly, apparent and effective temperatures
usually differ. At eclipse, a planet’s hottest regions are almost
always in view for an equatorial observer. We confirm that this
leads one to overestimate the dayside effective temperature
(yellow solid curve). Nightsides, on the other hand, appear
overly cool for recirculation efficiencies up to ≈0.7 (dark solid

Figure 5. The scaled phase offset uncertainty (kδkσf) vs. the phase amplitude
uncertainty (σδ), motivated by Equation (6). Each marker is a measurement of one
planet at one infrared wavelength, where blue circles and green diamonds are first-
and second-order data, respectively. Both axes have units of flux and the dashed
line shows where these quantities are equal, as expected for sensible σδ and σf.
Only HD149026b at 8.0μm has values differing by more than a factor of 2.5, due
to a partial phase curve that did not capture the peak flux. Nearly all published
phase curves have reasonable phase amplitude and phase offset uncertainties.

12 This is the same reason it is better to fit for we cos and we sin instead of e
and ω with radial velocity data.

13 Cowan & Agol (2011a) defined recirculation efficiency,  Î ¥[ )0, , as the
product of a planet’s radiative timescale and advective frequency, which differs
from e Î [ ]0, 1 used by Cowan & Agol (2011b) and in this work. Testing our
numerical flux grids, the best-fit function we find to convert between ò and ε is:




e =

+c
,

b

b

with b=1.652 and c=1.828. We use this equation in Figures 4 and 6.
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curve). Together, these results show that day and nightside
effective temperatures are closer in value than their apparent
temperatures. In fact, the real bolometric flux ratios of planets
in Figure 3 would be ∼20% larger for HD189733b to ∼90%
for WASP-18b. Furthermore, with perfect recirculation, the
temperature ratio for all hemispheres converges to ≈1.02. This
is inherent to our model because it does not include poleward
heat transport.

If one combines the observed flux from two opposing
hemispheres (i.e., values of the light curve at phases 180°
apart), then one can try to estimate the effective temperature of
the whole planet. In particular, we find the least-biased
apparent temperatures are at phases between about 25° and
50° after transit and eclipse (not shown).

We stress that these results are model-dependent. None-
theless, Figure 6 suggests that naïvely combining apparent
temperatures from two diametrically opposite hemispheres of a

planet will generally yield the planet’s global effective
temperature to better than 10%. The scheme of Cowan &
Agol (2011b), essentially what we use in the current study,
should perform considerably better: it is—by design—accurate
in the limits of no heat transport and perfect heat transport.
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