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Abstract

Denser housing construction can alleviate rising housing costs, but opponents fre-
quently cite car traffic as a primary concern. We quantify these heterogeneous traffic
costs from new residents across the Boston Combined Statistical Area. Using data on
households’ intra-metro-area travel, the road network, road speeds, and routing deci-
sions, we estimate monthly traffic counts on every street. We find that moving a house
from the 25th percentile of the distribution of nearby street traffic to the 75th percentile
decreases its value by 20%, while adding the same number of monthly trips to the street
of a similar house at the 75th percentile only decreases its value by 2.7%. We estimate
a structural, hedonic model of households’ residential choices and visits to points of
interest and find that households are willing to pay to avoid both car traffic on their
street and travel time, but that these preferences vary widely across the population. Us-
ing the model and estimates of how traffic volumes affect road speeds, we simulate the
traffic externalities caused by adding new residents in different locations. We find that
a Massachusetts state law targeting a 10% housing stock increase to land near public
transit stops causes $3.3 billion in traffic externalities from these new residents, an $820
million reduction relative to spreading those homes uniformly across space. Building
those units on thoroughfares instead would decrease welfare costs by an additional $520
million.
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1 Introduction

Many policy makers and economists argue that local land use regulations raise housing costs
by restricting housing supply, reducing economic growth and equity (Duranton and Puga,
2023; Glaeser and Gyourko, 2018; Hsieh and Moretti, 2019; Mast, 2023). Despite this, many
local governments maintain constraints on denser housing construction at the behest of their
constituents. A frequently cited concern about new housing developments are their car traffic
impacts. For example, 63% of Sacramento Valley residents said an increase in car traffic was
their top concern about the construction of multifamily housing in their neighborhood (Valley
Vision, 2023), and 75% of California city council meetings about housing or land use also
mention car traffic (Martin and Venugopal, n.d.). At the same time, states like Colorado and
Massachusetts have successfully enacted laws requiring municipalities to plan for targeted
denser housing near public transit stops.1 Quantifying the heterogeneous traffic costs of
new housing units can allow policy makers to make planning and siting decisions in part to
minimize them.

In this paper, we develop a methodology for measuring spatially heterogeneous costs of
traffic exposure and congestion to households. These estimates allow us to quantify the
traffic externalities imposed on incumbent households by adding new drivers in different
locations. We infer costs to residents by building and estimating a structural, hedonic model
of households’ location choices and visits to points of interest (POIs) like offices, schools,
and consumption amenities in the Boston Combined Statistical Area (CSA). We estimate
households’ heterogeneous willingness to pay to avoid cars driving down their streets and to
avoid spending more time traveling to POIs using the causal effects on housing transaction
prices of increased car trips on their streets and intra-metro-area travel times.

With estimates of preferences and the effects of increasing traffic volume on equilibrium
road speeds, we simulate the heterogeneous welfare costs to incumbent residents from adding
a new resident and their associated car traffic to each street across the Boston CSA. We
then evaluate the traffic externalities caused by variants of Massachusetts’ 2021 “MBTA
Communities” law, which required municipalities across eastern Massachusetts to plan for a
cumulative 10% increase in metropolitan area population near public transit stops. We find
that siting as specified in the law saves around $820 million in traffic externalities relative
to uniformly allocating that new housing across space. Concentrating this increased density
on thoroughfares instead would further reduce traffic externalities by approximately $580

million.

1Massachusetts passed its “MBTA Communities” law in January, 2021, and Colorado passed its “Housing
in Transit-Oriented Communities” law in May, 2024.
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To estimate households’ desires to avoid traffic on their streets and the effect of increasing
traffic volume on travel times, we first construct estimates of counts of monthly car trips
through every street in the Boston CSA in 2010 and 2018. Most existing datasets only
provide data on traffic counts for subsets of larger, non-residential roads, making it difficult
to assess the impacts of increased traffic flow on residential streets where most households
live. To construct our traffic counts, we first estimate monthly car traffic flows between
every house and every POI in the Boston CSA using GPS data on which POIs different
households visit along with data on the universe of residential property locations and travel
mode choices. We then combine a snapshot of the Boston CSA road network with a large
sample of roads’ speed distributions in 2010 and 2018 and compute the billions of optimal
car routes all households take when making POI visits across different draws from roads’
speed distributions. Finally, we sum up these per-household trip counts along their optimal
routes to construct our street-level traffic counts.

Next, we characterize households’ distastes for exposure to car traffic on their streets.
We take a hedonic approach and estimate the causal effect of an increase in monthly car
trips down a street on the transaction prices of houses on that street. A key challenge is that
unobserved changes in home and neighborhood quality could be correlated with changes in
nearby traffic and POI accessibility over time.2 The direction of this bias is theoretically
ambiguous; for example, increases in traffic over time could be driven by factors that raise
house prices, like improved nearby amenities, or factors that lower house prices, like increased
supply of housing nearby.

To circumvent these issues, we construct a shift-share instrument that takes advantage
of differences in the substitutability of households’ optimal routes across metropolitan-area-
wide traffic states. For intuition, suppose there are two traffic states, “low” and “high,” that
each occur with some probability. For some households, alternative routes exist in the high
traffic state that allow them to avoid most of the high-traffic slowdown along their low-traffic
optimal route. For others, no alternative routes exist. As such, changes in the probabilities
of these traffic states between 2010 and 2018 due to unforseen shocks like the advent of
ride-sharing and smartphone-based routing apps will induce differential changes in traffic
counts across streets, even if households’ origins and destinations are held fixed. Since we
construct our traffic counts in 2010 and 2018 by taking sums of state-specific estimated traffic
count estimates weighted by estimates of these traffic state probabilities in each year, we can
instrument for changes in car traffic with the changes that occur from holding state-specific
traffic flows fixed in 2010 and only allowing the traffic state probabilities to vary.

2This relationship is potentially more severely confounded in the cross section, where housing units on
busier streets could be of lower quality in unobserved ways.
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To accommodate potential nonlinearities in the effect of traffic on houses’ streets on their
transaction prices, we use a nonparametric instrumental variables estimator (X. Chen and
Christensen, 2018; Newey and Powell, 2003). We find that moving the same house from
the 25th percentile of monthly trips down a house’s street to the 75th percentile causes
a 20% decrease in home value, while adding the same quantity of trips to the street of a
house at the 75th percentile of nearby monthly trips only decreases that house’s value by
2.7%. To maximize power, we control for housing unit characteristics via random forests in a
partially linear fashion (Athey, Tibshirani, and Wager, 2019; Chernozhukov et al., 2018), and
we control for street and Census block group-by-year unobservables using generalizations of
fixed effects introduced in Arkhangelsky and Imbens (2022) and Arkhangelsky and Imbens
(2023).

Next, we translate these causal effect estimates into estimates of households’ willingnesses
to pay to avoid additional monthly trips down their streets. To do so, we specify a flexible,
hedonic model of households’ housing choices in which households derive heterogeneous
utilities from each housing unit’s nearby traffic exposure along with other property and
neighborhood characteristics (Bajari and Benkard, 2005; Berry and Pakes, 2007; Gorman,
1980; Lancaster, 1966; Rosen, 1974). Given the large number of housing options in the
Boston CSA, we view households as making approximately continuous choices over bundles
of housing characteristics. This perspective allows us to apply seminal results from Bajari
and Benkard (2005) and use the derivatives of our nonparametric house price surface estimate
with respect to monthly street traffic as our estimates of households’ disutilities from nearby
trafic exposure. We find that the median household is willing to pay around $3.50 to avoid
an additional monthly car trip on their street, but that willingness to pay can be larger or
smaller by orders of magnitude across the population, with the 10th and 90th percentiles of
households willing to pay $0.05 and $32 per avoided nearby monthly car trip.

We also estimate households’ heterogeneous distastes for travel time to POIs of different
types. While many papers have estimated individuals’ value of time using short-run variation
in travel times from fixed locations,3 our approach allows us to estimate households’ het-
erogeneous values of time for visits to different types of POIs from their long-run choices of
neighborhoods with differential access to POIs.4 We develop a model of households monthly
decisions to visit POIs across the Boston CSA. First, households with heterogeneous pref-
erences over visits to different categories of POIs choose how much time to spend visiting
POIs in each category. Then, they choose how to allocate that time to visiting POIs within

3See Section 1.1 for examples.
4As discussed in detail in Section 1.1, many papers also estimate households’ value of time from their

residential and/or commuting choices. Our hedonic approach enables us to estimate richer value-of-time
heterogeneity across households.
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each category across the Boston CSA, where POIs compete for visitors by provisioning visit
quality in a monopolistically competitive fashion. Importantly, travel times are random and
depend on the frequencies of different traffic states. Under this model, a household’s indirect
utility for POI visits from a particular home neighborhood can be written as a household-
specific weighted sum over home-neighborhood and category-specific “travel time indices,”
which characterize the visit-quality-adjusted difficulty of accessing POIs in that category for
any household that chooses to live in that neighborhood. Because the travel time indices
for each neighborhood are common across households and only the weights households place
on them are household-specific, we can nest this POI choice problem in our hedonic utility
framework, conceptualizing a household as valuing access to POIs from a home neighbor-
hood’s hedonically via its low-dimensional bundle of travel time indices.

We use our POI visit count data from SafeGraph to recover the parameters governing
households’ choices of visits to POIs. We show that the model admits a reduced form
for the number of visits per POI in a category and neighborhood that enables estimation
via an algorithm akin to a Poisson regression with high-dimensional fixed effects (Bergé,
2018), but with a mixture term capturing expected travel time disutility with respect to the
distribution of traffic states. We assume households living in the same Census block group
have the same preferences over POIs, which allows us to recover households’ preferences
over POI categories from their model-implied, quality-adjusted times spent visiting POIs
in each category. Finally, we translate these POI visit utilities into hedonic willingness to
pay by estimating the causal effects of increases in a neighborhood’s travel time indices on
house prices in that neighborhood in a similar nonparametric fashion to our approach for
estimating car traffic exposure disutilities. Because changes in travel times to POIs could
be correlated with unobserved changes in neighborhood quality, we again instrument for
changes in our travel time indices with changes in the indices induced only by changes in
traffic state probabilities. We find that households’ values of time implied by our estimates
vary substantially in both absolute terms (the 10th and 90th percentiles are around $12/hour
and $199/hour) and relative to median hourly wages in their neighborhood (the 10th and
90th percentiles are 27% and 511% of neighborhood median hourly wages).5

The last ingredient required to simulate the congestion externalities from new residents
is the effect of increased traffic volume on road speeds and, by extension, travel times.
We estimate these congestion functions using changes in road speeds and traffic densities
between 2010 and 2018. Since traffic speeds and densities are determined simultaneously

5These estimates are broadly in line with other value of time estimates based on households’ joint
residential and commuting choices (see Section 1.1 for references). See Su (2022a) for one summary of the
constellation of approaches to and estimates of values of travel time.
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in equilibrium and drivers decide whether to take a trip and which route to take based
on prevailing traffic conditions (Akbar, Couture, Duranton, and Storeygard, 2023; Couture,
Duranton, and Turner, 2018; Hall, 1996; Small and Chu, 2003; Yang, Purevjav, and Li,
2020), we instrument for changes in traffic densities with changes just induced by differences
in aggregate traffic state probabilities over time, as before. After converting these effects
of traffic densities on speeds into effects of traffic volume on travel times as in Yang et al.
(2020), we find that most street-level traversal times are relatively unresponsive to changes
in traffic volume, albeit more responsive than Yang et al. (2020).

Having estimated households’ disutilities from exposure to car traffic on their street and
from increased travel times due to increased congestion, we simulate the traffic externalities
caused by a counterfactual new resident added to each street in the Boston CSA. Adding a
new resident to a street who drives does not just affect the other households living on that
street; any households living on the streets on which that new resident drives will be exposed
to their car trips, and any households driving on the same streets will also be slowed down
by congestion caused by the new resident’s car trips. We assume this simulated resident
visits the same POIs and travels by car at the same frequency as the other residents on
the same street. Adding an additional resident to the median plot of residential land in
the Boston CSA imposes around $11, 100 in traffic externalities on incumbent households,
but this cost varies substantially across space. At the 10th percentile, a new resident causes
only around $5, 600 in traffic externalities, while at the 90th percentile, a new resident causes
nearly $21, 800 in traffic externalities. Exposure costs account for a substantial share of these
externalities; for half of potential locations, the welfare costs from exposure externalities are
greater than costs from congestion externalities, and the distribution’s right tail is large.

Finally, we use these estimates to evaluate the traffic externalities caused by new housing
built under variants of Massachusetts’ 2021 MBTA Communities law. Every municipality
served by the MBTA, except Boston, was required by law to change its land use regulations
to allow for a significant increase in population within half of a mile of public transit stations,
amounting to a 10% planned increase in the metropolitan area’s housing stock. This targeted
upzoning policy is different than proposals in other American cities and states that mandate
more uniform loosening of building restrictions across space.6 We compare the traffic impacts
of adding each municipality’s allotted housing units according to three coarse targeting
policies: within a half mile of public transit stops as the original law dictates, across all
residential land within its borders, or instead along larger streets.

We find that building new housing in the locations specified by the original MBTA

6For example, the city council in Cambridge, Massachusetts recently proposed allowing six-story apart-
ment buildings on every residential lot within their borders (Cambridge City Council, 2024).
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Communities law would cause a $3.3 billion welfare loss to Boston CSA incumbents from
traffic externalities, $2.1 billion (64%) of which are exposure externalities. In contrast,
building the same quantities of new housing in each municipality but spreading them across
all residential land more evenly would cause $4.1 billion in traffic externalities, $2.6 billion
(64%) of which are exposure externalities. Around $500 million of the $820 million in
additional traffic externalities (61%) are due to increases in exposure externalities. While
targeting new housing near public transit meaningfully reduces traffic externalities relative
to increasing density across residential lots, its distributional impacts are mixed. Under the
MBTA Communities targeting policy, traffic externalities are 22% larger in block groups with
bottom quartile median household incomes, while traffic externalities are 27% smaller in the
top quartile of block groups by income. If the MBTA Communities law’s housing units were
built instead on residential land on thoroughfares, incumbents would incur only $2.7 billion
in traffic externalities, with only 48% driven by exposure externalities. While this targeting
rule only reduces congestion externalities by $50 million relative to the policy variant with
minimum density increases everywhere, households in every neighborhood income quartile
are hurt less by this policy variant’s traffic externalities than in the other two we consider.

1.1 Related literatures

This paper contributes to several literatures in urban and public economics. Most directly,
a body of existing work has estimated various costs of exposure to car traffic like pollution
(Currie and Walker, 2011), noise (Swärdh and Genell, 2020), lack of safety (Ewing and
Dumbaugh, 2009), and parking trouble (Shoup, 2018). This paper remains agnostic about the
source of households’ distaste for traffic exposure and instead estimates households’ hedonic
disutilities from the entire bundle of costs nearby traffic exposure can impose. Recently,
Tang (2021) also estimated substantial hedonic value of decreased traffic exposure; we are
able to characterize heterogeneity in these costs across households and study its implications
for counterfactual planning policies.

In addition, a large body of work has quantified the costs of car traffic congestion and
policies intended to reduce it via infrastructure improvements and or road pricing (Allen
and Arkolakis, 2022; Almagro, Barbieri, Castillo, Hickok, and Salz, 2024; Ater, Shany, Ross,
Turkel, and Vasserman, n.d.; Barwick, Li, Waxman, Wu, and Xia, 2024; Bordeu, 2023;
Cook and Li, 2023; Durrmeyer and Martinez, 2022; Herzog, 2024a, 2024b; Kreindler, 2024;
Severen, 2023; Tsivanidis, 2024; Yang et al., 2020). An important determinant of many of
these traffic cost estimates is peoples’ values of travel time, which a rich literature also seeks
to estimate accurately via both “short-run” variation in traffic conditions (Buchholz, Doval,
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Kastl, Matějka, and Salz, 2020; Castillo, 2023; Goldszmidt et al., 2020; Rosaia, n.d.; Small,
Winston, and Yan, 2005) and “longer-run” choices of trip destinations and or origins (Su,
2022b). We estimate values of time that are broadly consistent with the latter literature.

Our work also relates to the literature on spillovers from increased housing density. Recent
work has found that increasing (allowable) density decreases nearby rents and property values
(Anagol, Ferreira, and Rexer, 2021; Asquith, Mast, and Reed, 2023; Davidoff, Pavlov, and
Somerville, 2022; Diamond and McQuade, 2019; Li, 2022; Pennington, 2021; Severen and
Plantinga, 2018; Turner, Haughwout, and Van Der Klaauw, 2014). However, these papers
provide mixed evidence as to whether these price decreases are due primarily to the “supply
effect” of increasing the quantity of similar housing units or an “externality effect” of adding
density on neighborhood character and/or nearby amenities. Pollmann (2020) shows that
using variation in distance to the same density shock for identification as many of these
papers do can end up differencing out much of the effect of the shock if its impact diffuses
broadly in space, as car traffic tends to do. Instead, we measure traffic costs directly and
use traffic simulations to characterize the spatial extent of a particular negative externality
from increased housing density.

More broadly, our work is situated in a large literature that characterizes how much house-
holds value certain housing and neighborhood characteristics via the effects those charac-
teristics have on housing values, e.g. Banzhaf (2021); Campbell, Giglio, and Pathak (2011);
Chay and Greenstone (2005); Diamond and McQuade (2019); Greenstone and Gallagher
(2008); Han, Heblich, Timmins, and Zylberberg (2024); Linden and Rockoff (2008); Rossi-
Hansberg, Sarte, and Owens III (2010). We use state-of-the-art causal inference methods
to identify households’ heterogeneous distastes for traffic exposure and congestion from the
curvature of an estimated hedonic price surface (Agarwal, Li, and Somaini, 2023; Bajari and
Benkard, 2005; Banzhaf, 2021; Rosen, 1974).

Finally, a large recent literature has developed integrated models of residential choice and
intra-metro area travel (Ahlfeldt, Redding, Sturm, and Wolf, 2015; Almagro and Dominguez-
Iino, 2022; Athey, Blei, Donnelly, Ruiz, and Schmidt, 2021; Athey, Ferguson, Gentzkow, and
Schmidt, 2021; Barwick et al., 2024; Bordeu, 2023; Cao, Chevalier, Williams, and Parsley,
n.d.; Couture, Gaubert, Handbury, and Hurst, 2023; Dingel and Tintelnot, 2020; Duran-
ton and Puga, 2023; Miyauchi, Nakajima, and Redding, 2021; Monte, Redding, and Rossi-
Hansberg, 2018; Oh and Seo, 2022; Severen, 2023; Tsivanidis, 2024). Given our counterfactu-
als of interest, our hedonic approach enables estimation of rich heterogeneity in households’
preferences for both traffic exposure and access to POIs of all types without needing to spec-
ify households’ preferences for other determinants of housing and neighborhood desirability.
Our model of households’ allocation of time to visit different types of POIs most resembles
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models proposed by Couture (2016), Su (2022a), and Cook (2022) and our monopolistically
competitive structure resembles the amenity supply model in Almagro and Dominguez-Iino
(2022), but we aim to capture additional heterogeneity across households in their category
preferences.

2 Data and measurement

To quantify households’ disutility from exposure to car traffic and to estimate how traffic
volumes affect road speeds, we first need measures of traffic flows down streets and a notion of
households’ exposures to those flows. Such data are hard to come by at scale,7 particularly
on the residential streets on which most households live. As such, we construct our own
measure by aggregating several sources of data on traffic flows and conditions in the Boston-
Worcester-Providence Combined Statistical Area (CSA), a group of counties defined by the
United States Office of Management and Budget that represents a unified labor market
encompassing eastern Massachusetts, all of Rhode Island, southern New Hampshire, and
northeast Connecticut.

2.1 Data sources

SafeGraph Places and Visits. SafeGraph provides a dataset based on GPS pings from
a nationally-representative sample of smartphones containing monthly counts of visits to
particular points of interest (POIs) by devices owned by people that reside in different
2010 Census block groups.8 SafeGraph also provides POIs’ geographic coordinates, NAICS
code classifications, and median time spent “dwelling” at them. A benefit of measuring
origin/destination flows using these data is that they are more representative of all POI
visits, not just the 15% of trips that are commutes (USDOT BTS, 2017).9 We use a cross-
section of trip counts from April of 2018. Figure 1 presents the distribution of number of
trips in the Boston CSA. For reference, the median person in the data takes 60 trips per
month, and people frequently travel several miles from home to visit even frequently-visited
POIs like grocery stores and schools. When we estimate households’ preferences for access
to POIs in different categories, we group POIs into seven categories based on their two-digit

7Most cities only conduct traffic studies infrequently and on main thoroughfares.
8Census block groups are constructed to include between 600 and 3,000 people.
9In particular, the 2017 National Household Transportation Survey finds that 15% of daily trips are

commuting trips, 45% of daily trips are for shopping and/or errands, and 27% of daily trips are social in
nature (USDOT BTS, 2017).

9



Figure 1: The distribution of trip frequencies
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NAICS codes.10 Figure A.1 shows the distributions across devices of counts of visits to POIs
in these seven categories for people in the Boston CSA.

CoreLogic Tax and Deed Datasets. CoreLogic’s historical tax dataset contains a myr-
iad of characteristics of every property in the United States. In particular, we observe each
property’s geographic coordinates, number of housing units on the property, owner occu-
pancy,11 and observable characteristics like lot size, building age, square footage per unit,
and counts of bedrooms, and bathrooms, and other rooms per unit. CoreLogic’s owner-
ship transfer dataset also contains data on the universe of property transactions since 1997,
including transaction prices for all states with mandatory transaction price reporting, as
Massachusetts, New Hampshire, Rhode Island, and Connecticut all do.

US Census and American Community Survey. We derive counts of adult drivers
by Census block group in 2010 and 2018 using data from the 2010 Census and 2014-2018
American Community Survey (ACS) aggregated tables. Since not all multifamily properties
in CoreLogic have unit counts listed, we also estimate these unit counts using multifamily
building size data by block group, again from the 2014-2018 aggregated tables.

10The categories grouping two-digit NAICS codes we construct are Industrial: 11, 22, 23, 31, 32, 33;
Transportation: 48, 49; Healthcare: 62, 81, 92; Offices: 51 through 56; Education: 61; Stores: 42, 44, 45;
and Leisure: 71, 72.

11We infer owner occupancy if the address of the property is the same as the address from which property
taxes for that property are paid.
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Open Street Map. To determine which streets drivers take when making the POI visits
we see in the data from SafeGraph, we use a crowdsourced snapshot of the entire Boston
CSA road network from Open Street Map. We also match each property from CoreLogic
and POI from SafeGraph to its closest street in the road network.

TomTom Traffic Stats. To know how fast cars actually travel along roads in the Boston
CSA, we assemble a dataset from TomTom containing the distributions of cars’ speeds on
a large same of road segments in the Boston CSA over the course of April, 2010 and April,
2018. TomTom constructs such information by aggregating GPS data from their in-car
navigation devices, navigation systems licensed to car manufacturers, smartphones, and
partner commercial vehicle fleets. For each road segment and time period we sample, we also
observe the total number of cars whose data TomTom used to estimate the road segment’s
distribution of speeds during that time period.

2.2 Estimating monthly car traffic flows through streets

We now describe how we combine these data sources to construct our measures of monthly
traffic flows through streets. First, we construct estimates of monthly car trip counts between
every house and POI in the Boston CSA. To do so, we assume that every device residing in
a given Census block group takes the same monthly trips to POIs and compute the average
number of monthly trips taken to each POI by a device residing in each block group. We
then multiply those average monthly trip counts per household for a given Census block
group by estimates of the number of drivers residing in each residential property derived
from the 2010 Census and 2014-2018 ACS; doing so yields counts of 2010 and 2018 monthly
trips taken from every residential property to every POI in the Boston CSA.12

Next, we infer which roads households take when making these car trips. To do so, we
repeatedly choose sets of speeds for all roads from the road speed distributions provided
by TomTom in a manner described in detail in Appendix B. We call each profile of speeds
across the Boston CSA’s roads a traffic state. For each of these traffic states, we compute
the optimal driving route taken by every household to every POI they visit, amounting to
tens of billions of routes. We then add up the total monthly car traffic flows through each
street in each traffic state to construct traffic-state-specific counts of monthly cars passing
through each street. To aggregate these state-specific traffic counts into monthly total street-
level car traffic counts, we sum these state-specific flows multiplied by the probabilities of

12Since we only have POI visiting data for 2018, these origin/destination flows will still reflect POI visiting
patterns so long as the locations of POIs in space are similar in 2010 and 2018, even if the exact POIs are
not.
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being in each state; see Appendix B for details on how we construct those probabilities. We
repeat this procedure using our state-specific flows and speeds in 2010 and 2018 to construct
separate estimated monthly traffic counts for each Boston CSA street in 2010 and 2018. In
Figure A.2, we plot the 2018 distribution of our inferred monthly traffic counts across the
nearest streets of each housing unit in the Boston CSA.

3 Valuing households’ traffic exposure costs

To assess how much households care about avoiding cars driving past their homes, we es-
timate the causal effect of increasing the number of monthly car trips through a street on
the prices of homes on that street. We do so by relating changes in street-level car trips
between 2010 and 2018 to changes in the transaction prices of homes on those streets over
the same time period. We use a shift-share instrument to isolate exogenous variation in
these street traffic changes due just to differences in streets’ exposures to changes in the
frequency of aggregate traffic states, as we describe in more detail in Section 3.1.1. To ac-
commodate nonlinearities and maximize power, we estimate the effect nonparametrically,
and we control flexibly for a high-dimensional set of housing unit characteristics and street
and neighborhood-by-year level unobservables using tools at the intersection of causal in-
ference and machine learning. We then interpret these causal effects through the lens of
a hedonic model of households’ long-run residential choices, allowing us to estimate house-
holds’ heterogeneous willingness to pay to avoid traffic on their street based on their observed
choices.

3.1 Estimating the effect of traffic flows on property values

To estimate the effect of own-street traffic flows on house prices, we use data on 291,147
single-unit residential property transactions from the years 2010-2012 and 2017-2019 from
CoreLogic.13 We assume our estimates of 2010 traffic flows reflect street traffic conditions
for houses transacted in 2010 through 2012 and that our estimates of 2018 traffic flows
reflect street traffic conditions for houses transacted in 2017 through 2019. We leave out
transactions between 2013 and 2016 because we cannot estimate traffic flows that would
accurately reflect traffic conditions those years given that we only have cross-sections of road

13We restrict our attention to arms-length transactions of owner-occupied single-family homes and single-
unit condominiums since prices of rental properties may be set differently and unit counts for multi-unit
apartment buildings in CoreLogic can be unreliable (albeit less so in New England than in other regions of
the United States).
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speed data from 2010 and 2018.14

To describe our estimation strategy formally, we first introduce some notation. We index
housing units by j and years by y, where each housing unit j is associated with a street ℓ(j)
and a 2010 Census block group n(j), and each year y is associated with a given traffic period
t(y) ∈ {2010, 2018}, as described above. We let Pjy denote the sale price of housing unit j
transacted in year y, we let Cℓ(j)t(y) denote our estimate of the count of monthly car trips
through house j’s street ℓ(j) in period t(y), and we let Aj ∈ Rd denote a vector of observable
housing unit characteristics.15

We model a housing unit j’s transaction price in year y as being determined by the
following flexible function of its observed and unobserved characteristics:

Pjy = p
(C)
t(y)(Cℓ(j)t(y))p

(−C)
y (Aj, ϕℓ(j), φn(j)y) exp(ξjy), (1)

where p(C)
t(y) is a period-specific, unrestricted function of housing unit j’s exposure to monthly

car trips on its street in period t(y),16 and p
(−C)
y is a year-specific, unrestricted function

of housing unit j’s observed characteristics, as well as unrestricted street ℓ(j)-specific and
Census block group n(j)-by-year y unobservables that act as generalizations of street and
neighborhood-by-year fixed effects (Arkhangelsky and Imbens, 2022, 2023). ξjy captures
remaining unobserved, within-neighborhood determinants of time-varying housing unit de-
sirability. The model (1) is a nonparametric generalization of a standard log-linear model of
house prices (see e.g. Banzhaf (2021)):

log(Pjy) = βt(y)Cℓ(j)t(y) + π′
yAj + ϕℓ(j) + φn(j)y + ξjy,

where street traffic Cℓ(j)t(y) and housing unit observables affect prices linearly with time-
varying coefficients along with street ℓ(j) and Census block group n(j)-by-year y fixed effects.

While (1) does restrict heterogeneity in street traffic’s effect on transaction prices across
houses, we do not require the effect to be linear, and we maintain a healthy amount of
flexibility in how variables other than nearby street traffic affect transaction prices. This
flexibility enables us to maximize power by stripping away as much extraneous variation
in transaction prices as possible. Since not every housing unit is transacted in every year,
including time-invariant, street-level “fixed effects” in the model ensures that our estimates

14We center the first three-year bin around 2011 rather than 2010 to avoid the brunt of the Great
Recession’s effect on home prices.

15In particular, Aj contains the age of the housing unit, lot size, floor space, number of bedrooms, number
of bathrooms, total number of rooms, and an indicator for whether the housing unit is a single-family home.

16As discussed in Kuminoff and Pope (2014) and Banzhaf (2021), allowing for time-varying effects is
important since, as we will discuss in Section 3.2, not doing so will conflate changes in housing unit charac-
teristics and changes in the equilibrium relationship between house prices and characteristics over time.
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of this model will be based on variation from changes in street traffic and transaction prices
over time in a repeated cross-sections sense (Banzhaf, 2021), since, within a cross section,
it is reasonable to suspect that housing units on busier streets could be of lower quality in
unobserved ways.

Despite being able to account for a variety of observed and unobserved differences in
housing unit desirability when we go to estimate (1), changes in street traffic over time
could still be correlated with unobserved within-neighborhood changes in the desirability of
living in houses on that street that could bias estimates of p(C)

t(y) in theoretically ambiguous
ways. For example, the construction of a new housing development in a neighborhood would
cause prices nearby to go down due to the increase in housing supply, but the increase in
residents could also increase car traffic on nearby streets. Conversely, if amenities within
the neighborhood improved, then a street nearby might get more car traffic from visitors to
those amenities and desirability of housing units on that street could improve given their
proximity to the improved amenities. To avoid this spurious variation, we construct a shift-
share instrument C̃ℓ(j)t(y) for street traffic flow Cℓ(j)t(y) that we describe in detail in Section
3.1.1.

Before introducing our instrument, we first describe how we identify and estimate the
effect of street car traffic on house prices p(C)

t(y) under the model (1). Concretely, we assume
that the time-varying house-specific unobservables ξjy are mean-independent of the instru-
ment C̃ℓ(j)t(y), observable housing unit characteristics Aj, and street and block group-by-year
means of transformations of these variables Xℓ(j) and Xn(j)y, respectively:

E
[
ξjt

∣∣∣ C̃ℓ(j)t(y), Aj, Xℓ(j), Xn(j)y

]
= 0. (2)

Together, (1) and (2) imply house transaction prices in logs follow a Nonparametric In-
strumental Variables (NPIV) model (Newey and Powell, 2003) with linearly separable but
nonparametric controls as in Chernozhukov et al. (2018); Robinson (1988). As discussed
in Arkhangelsky and Imbens (2023) and Wooldridge (2021), including street ℓ(j) and block
group n(j)-by-year y fixed effects in a linear model is equivalent to controlling linearly for
vectors Xℓ(j) and Xn(j)y of street and block group-by-year-level averages of the instrument
and observed characteristics, respectively. By instead controlling for group means of higher-
dimensional transformations of, and interactions between, monthly street traffic C̃ℓ(j)t(y) and
housing unit characteristics Aj and accounting for these controls in a nonparametric fashion,
we account for richer forms of unobserved heterogeneity across streets and block groups over
time than vanilla fixed effects (Arkhangelsky and Imbens, 2022, 2023)

To estimate the traffic exposure price effect function p(C)
t(y) under (1) and (2), we augment

an NPIV estimator (see e.g. X. Chen and Christensen (2018)) with a debiased machine learn-
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ing approach to controlling for auxiliary variables akin to partially linear IV (Chernozhukov
et al., 2018; Robinson, 1988). In particular, we approximate the logarithm of the traffic
exposure price effect function log p

(C)
t(y) by a linear combination of flexible basis functions and

use the elements of a higher-dimensional basis expansion of C̃ℓ(j)t(y) as instruments, in accor-
dance with X. Chen and Christensen (2018). Having reduced effect estimation to a partially
linear, multivariate instrumental variables regression, we predict log prices and the terms of
the basis expansions of the treatment and instrument in each year using Generalized Random
Forests (Athey et al., 2019),17 subtract those predictions from their realizations as in Cher-
nozhukov et al. (2018); Robinson (1988), and then estimate the coefficients on the treatment
basis expansion via two-stage least squares on these residualized variables (Chernozhukov et
al., 2018; Robinson, 1988).

3.1.1 Instrumenting for traffic flow changes

To describe our shift-share instrument for traffic flows, it is instructive to first return to how
we construct our measures of monthly street car traffic flows. Suppose there are two possible
states of the world: “high” traffic H and “low” traffic L that occur with probabilities wtL

and 1 − wtL in periods t = 2010 and t = 2018. In each period t ∈ {2010, 2018} and traffic
state s ∈ {L,H}, every road segment in the road network has a speed, so we can compute
the optimal driving routes each household in the Boston CSA would take to get to the POIs
they visit in each traffic state. For each period t, road segment ℓ and traffic state s, we let
Cℓts denote the total number of car trips that traverse road segment ℓ each month if all car
trips occurred during traffic state s in period t. Given the traffic state probabilities wtL and
1−wtL, we can compute the actual number of monthly car trips on road segment ℓ in period
t as Cℓt = wLtCℓtL + (1− wtL)CℓtH .

Recall our concern that changes in traffic flows Cℓt within a neighborhood over time
could be correlated with confounding micro-geographic changes in population and/or housing
desirability. To address these concerns, we construct a shift-share-like instrument for realized
traffic flows in period t with the traffic flows induced just by the traffic state probabilities
wtL and 1 − wtL in that period, while holding the state-specific traffic flows on each road
segment fixed in 2010:

C̃ℓt := wtLCℓ,2010,L + (1− wtL)Cℓ,2010,H .

17We do not need to cross-fit explicitly since Generalized Random Forest predictions generated via the
grf package automatically leave out each observation from within-leaf averages when computing in-sample
predictions (Athey et al., 2019). Moreover, Random Forests are algorithmically stable (Wang, Wu, and
Nettleton, 2023), and thus bias due to over-fitting is minimal when estimating treatment effects in a doubly-
robust fashion (Q. Chen, Syrgkanis, and Austern, 2022).
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Given our inclusion of road segment-specific “fixed effects” in the estimation strategy de-
scribed above, this instrument takes advantage of changes in the probability of the low
traffic state over time, along with the fact that some streets are exposed to more or less car
traffic from this change in state probabilities depending on the extent to which households
who drive through a street in the low traffic state change their route in the high traffic state.
In this sense, our identifying variation is closest to that discussed in Borusyak, Hull, and
Jaravel (2023) and Borusyak and Hull (2023), where our “shares” are the 2010 state-specific
traffic flows and our “shifts” are the changes in state probabilities over time. In keeping with
the discussion in Borusyak et al. (2023), we assume our controls described in the previous
section are rich enough to span the expected instrument.

Since we do not observe these traffic state probabilities, we instead estimate them, as
intimated in Section 2.2. In particular, we assume that, for the streets for which we observe
traffic speed distributions, the counts of cars TomTom used to construct those speed dis-
tributions are proportional to the true traffic counts on those streets.18 Then, we regress
these TomTom sample sizes for road segments ℓ on the vectors of traffic-state-specific counts
Cℓs across traffic states to recover these probabilities up to a normalization; see Appendix
B for details. One might be concerned that our estimates of the state probabilities could be
contaminated by the same confounding changes in state-specific traffic flows we intend to
avoid, so when computing the instrument for a street ℓ, we use state probabilities estimated
excluding all road segments in the same Census tract. In practice, we also consider a finer
set of 19 different traffic states corresponding to all road segments’ speeds being a particu-
lar ventile of their respective speed distributions, not just “low” or “high” traffic; again, see
Appendix B for details.

3.1.2 Results

In Figure 2, we plot the effects in 2018 on housing units at different levels of baseline nearby
street traffic of increasing the monthly car trips through a house’s street by the inter-quartile
range of the traffic exposure distribution across housing units (plotted in Figure A.2), or
around 27,000 trips. We find that the effect is markedly convex in the affected household’s
baseline nearby car trips: moving a house from the 25th percentile of monthly trips down a
house’s street to the 75th percentile causes a 20% decrease in home value, while adding the
same quantity of trips to the street of a house at the 75th percentile of nearby monthly trips
only decreases that house’s value by 2.7%.19

18Such an assumption could be violated if the cars from which TomTom derives its traffic speeds are not
a representative sample from the population of cars in the Boston CSA.

19In Table A.1, we also report average effects by quintile of the distribution of housing units’ baseline
nearby monthly trips. Since the 95% simultaneous confidence intervals for the average effects on housing
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Figure 2: The effect of adding the inter-quartile range of monthly trips on home prices
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Notes: We present our NPIV estimates of the 2018 effect on home prices of an increase of own-street traffic
equal to the inter-quartile range of monthly trips through streets (around 27,000 trips) by baseline street
traffic. Dashed lines are 90% uniform confidence bands computed as in X. Chen and Christensen (2018) via
a bootstrap clustered at the street level. We instrument for changes in busyness as described in Section
3.1.1. We plot the distribution of nearby monthly trips across in Figure A.2.

We also consider the effects of an alternative intervention, namely adding 3,000 monthly
car trips to housholds’ streets. We view this intervention as an approximation to the effect
of adding a 50 unit apartment building to a household’s street, where we assume each new
resident takes 60 monthly car trips (the median number of monthly trips per driver, per
Figure 1). We plot the effects of adding 3,000 trips to the streets of housing units with
different baseline levels of nearby monthly car traffic in Figure A.3a, and we report average
effects of this intervention on the values of homes in different quintiles of the baseline monthly
nearby trip distribution in Table A.1. We find that adding 3,000 monthly trips down the
street of a housing unit in the bottom 20% of baseline nearby monthly trips decreases the
value of that home by almost 7%, while adding the same quantity of monthly trips to the
busiest streets would decrease the values of homes on those streets by an average of 0.035%.20

Our negative house price effects have broadly similar magnitudes to existing negative
effects of multifamily housing construction on nearby home prices and rents found in the

units in the first and second quintiles of the nearby monthly trip distribution do not overlap with the
95% simultaneous confidence intervals corresponding to the effects on housing units in the fourth and fifth
quintiles, we can reject the null that the average effects are homogenous across baseline monthly trip quintiles
at the 5% level.

20We can reject the null hypothesis of homogenous average effects across baseline street traffic quintiles
at the 5% level because the 95% simultaneous confidence intervals for these quintile-specific average effects
do not overlap.
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literature, e.g. Asquith et al. (2023); Davidoff et al. (2022); Diamond and McQuade (2019);
Li (2022); Pennington (2021). Although our estimates of adding traffic to the least busy
streets are on the higher end of these existing estimates,21 these papers mostly study the
effects of realized multifamily developments on nearby prices and rents, which tend to be
sited on busier streets where our estimated effects are the smallest. As such, we view our
estimates as being consistent with the negative effects found in this literature.

3.2 Translating price effects into preferences: a hedonic model of

residential choices

To translate these treatment effects of increased nearby car traffic on house prices into
measures of households’ preferences to avoid nearby car traffic, we interpret our estimates
through the lens of a structural, hedonic model of households’ long-run residential choices.22

In particular, we let J denote the set of housing options available to households in the
Boston CSA, and we index individual housing options by j. Each housing option j lies
on street ℓ(j) in neighborhood n(j) and is endowed with a vector of observable attributes
Aj ∈ Rd, a vertical unobserved quality ξj ∈ R, and a price Pj > 0.23 Each street ℓ exists
in a neighborhood n(ℓ) and is endowed with two attributes that affect the desirability of
living on it: a flow of total monthly cars Cℓ passing through it and an unobservable variable
ηℓ with unrestricted dimension representing any additional street or neighborhood-specific
factors such as views or unobserved amenities.

Household i with wealth Wi chooses a housing option Ji ∈ J and aggregate consumption
of other goods Ei to maximize an individual-specific, hedonic utility function with the follow-
ing quasilinear functional form (Bajari and Benkard, 2005; Berry and Pakes, 2007; Gorman,
1980; Lancaster, 1966; Rosen, 1974):24

(Ji, Ei) := argmax
j∈J , e>0

U
(H)
ij + e such that e+ Pj ≤ Wi,

U
(H)
ij := −βiCℓ(j) + U

(−C)
i (Aj, ηℓ(j)) + ξj.

(3)

In (3), βi denotes household i’s willingness to pay to reduce the monthly traffic flow Cℓ(j)

21These larger effect estimates are well within the range of effect magnitudes of other neighborhood
amenity changes like urban revitalization programs (Rossi-Hansberg et al., 2010) or the death of street trees
(Han et al., 2024).

22See Bishop and Murphy (2011) and Bishop and Murphy (2019) for cogent discussions about how to
interpret static hedonic residential choice models in the presence of moving costs and uncertainty about
future neighborhood characteristics.

23Since our residential choice model is static, for notational convenience, we drop the time subscripts on
variables we used in the previous section.

24This type of model is also referred to as a “pure characteristics” demand model (Berry and Pakes, 2007).
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down their chosen street by one car. As we show in Appendix C.2, our data are inconsistent
with essentially any convexity in households’ disutilities from exposure to the traffic on their
chosen streets (Agarwal et al., 2023). As such, we restrict our attention to linear disutility
from nearby traffic exposure. The function U

(−C)
i captures household i’s utility over the

observable and unobservable attributes of housing option j on street ℓ(j) in neighborhood
n(j). Hedonic models of preferences can represent households’ heterogeneous utilities more
realistically than workhorse alternatives like the mixed logit model in the presence of many
products (Bajari and Benkard, 2005; Berry and Pakes, 2007). Moreover, the hedonic model
also enables convenient estimation of heterogeneous preference parameters that vary flexibly
across households, as we will discuss in detail shortly (Bajari and Benkard, 2005).

To map our data on households’ realized housing and POI visit choices into their pref-
erence parameters, we first note that, under our model (3), household i gets the following
indirect utility from choosing housing option j:

U
(H)
ij = −βiCℓ(j) + U

(−C)
i (Aj, ηℓ(j)) + ξj − Pj.

Since household i’s indirect utility from housing option j is determined only by the price Pj

of housing option j and the bundle of characteristics

Xj :=
(
Cℓ(j), Aj, ηℓ(j), ξj

)
with which housing option j is endowed, we can equivalently view household i as choosing a
bundle of housing option characteristics Xj from the set of available housing option charac-
teristic bundles X and paying a price Pj for that bundle (Bajari and Benkard, 2005; Berry
and Pakes, 2007; Rosen, 1974). A seminal result by Bajari and Benkard (2005) then dictates
that, under no assumptions on the structure of the supply of housing options, if households
are maximizing their respective utilities according to (3), there exists a unique, smooth price
function p : X → R+ mapping each housing option’s characteristic bundle Xj to its price Pj,
i.e Pj = p(Xj). Then, we can rewrite household i’s indirect utility maximization problem as
follows:

max
(c,a,η,ξ)∈X

ui(c, a, η, ξ)− p(c, a, η, ξ),

ui(c, a, η, ξ) := −βic+ U
(−C)
i (a, η) + ξ,

(4)

which is an optimization problem directly over bundles of housing option characteristics.
As illustrated in Figure 5, the set of possible street traffic exposures across over 460

thousand unique streets in the set X of over 3 million unique housing options is quite rich.
As such, we assume households make an essentially continuous choice over nearby street
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traffic Cℓ(j).25 Then, so long as p is convex, we can identify household i’s willingness to
pay to avoid nearby street traffic βi using the first order condition of their housing choice
problem with respect to street traffic (4) (Agarwal et al., 2023; Bajari and Benkard, 2005):

∂ui
∂c

∣∣∣∣
x=XJi

− ∂p

∂c

∣∣∣∣
x=XJi

= 0 =⇒ βi =
∂ui
∂c

∣∣∣∣
x=XJi

=
∂p

∂c

∣∣∣∣
x=XJi

.

In the previous section, we estimated precisely the curvature of the equilibrium house price
surface in each period with respect to the monthly car traffic passing by a house p(C)

t . As
such, we can use derivatives of our estimates of the 2018 equilibrium price surface p(C)

2018 to
back out each household’s willingness to pay to avoid each monthly car trip through their
home street. We summarize our estimates of these derivatives in Figure A.3b and Table A.1.
In Appendix C.1, we describe how we convert our price surface in logs to one in levels by
predicting the 2018 values of housing units that did not transact in 2018, as well as how we
adjust the price surface slightly to ensure it is consistent with all households’ maximizing
their respective utility functions.

In Figure 3, we plot the distribution of households’ willingnesses to pay to avoid each
monthly trip through their home street. We find that the median household is willing to pay
$3.5 in property value to avoid an additional monthly car trip through their chosen home’s
street, but that this disutility varies by orders of magnitude in the population, with the
10th and 90th percentiles of households willing to pay $0.05 and $31.89 per avoided nearby
monthly car trip.

4 Valuing households’ time costs of congestion

Having characterized households’ willingnesses to pay to avoid exposure to nearby street
traffic, we now estimate households’ heterogeneous preferences over travel time to POIs. We
also estimate how those travel times respond endogenously to additional cars on the road. To
do so, we build and estimate a structural model of households’ POI visiting behavior and road
congestion. In our model, households’ first allocate monthly time to visiting POIs in different
categories and then choose which POIs to visit within each category across space subject
to those time constraints. We then integrate this model into our hedonic residential choice
framework described in Section 3.2. Intuitively, we are able to infer households’ willingnesses
to pay for POI access from their realized choices of both POI visits and residential choices.

25Bajari and Benkard (2005) and Agarwal et al. (2023) discuss partial identification of the distribution of
preferences across households when X is considered to be discrete; the richer the choice set X is, the tighter
the bounds on each households’ preference parameters are.
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Figure 3: The distribution of estimated WTP to avoid trips on own street
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Doing so allows us to estimate preferences that are both internally consistent with our hedonic
utility framework and have richer variation across households than if we were to calibrate
values of time based on existing estimates.

4.1 Model of demand for POI visits

We introduce our model of households’ values for POI visits in reverse order of their decisions.
We begin with households’ allocation of time to POI visits given a home neighborhood and
then return to how households choose housing options in part based on their differential
access to POIs.

4.1.1 Choices of POI visits given residential choices

Having chosen a housing option in a neighborhood, each household chooses how to allocate
time within a month to visiting POIs of different types. Let N denote the set of neighbor-
hoods in the Boston CSA. We assume that in each neighborhood k ∈ N , there exists a mass
Mck of non-atomic POIs in each category c. Each POI ω in neighborhood k and category
c provision a differentiated experience with quality vck(ω) to the households that choose to
visit it. We assume POIs within each neighborhood and category have symmetric fixed and
variable costs and compete by choosing their experience quality to maximize profits. In
equilibrium, all POIs in the same neighborhood k and category c choose vck(ω) equal to the
same quality value vck; see Appendix D.1 for details.

We model POIs as competing on quality, not prices, in contrast to other models of
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POI supply and demand like Almagro and Dominguez-Iino (2022). Our notion of a POI is
broader than just consumption amenities like restaurants and bars, encapsulating places like
workplaces and schools as well, so not all POI visits have an obvious price associated with
them.26 Further, it would be unrealistic to assume POIs compete directly on visit times,
since households willingly make frequent, long-duration visits to POIs like workplaces and
travel long distances to visit desirable consumption amenities like restaurants and sports
venues. As such, allowing POIs within each category to differentiate themselves on quality
parsimoniously captures the notion that, in a similar manner across POI categories, there
are POIs that households value traveling to despite their high travel times.

Household i with home neighborhood n chooses the quantity of monthly visits to POIs
in each category c and neighborhood k to maximize their POI visit utility subject to a time
budget constraint. We assume that travel times are stochastic: there exist S different traffic
states, each of which corresponds to a distinct profile of car speeds across the roads in the
Boston CSA’s road network, and each state s occurs with probability ws. Under traffic state
s, it takes tnks hours to travel from neighborhood n to neighborhood k.27 For computational
tractability, we assume that the travel time from every house in neighborhood n to every
POI in neighborhood k is constant under traffic state s. Each visit to POI ω in category c
and neighborhood k also costs the household the time tnks it takes to travel to and from the
POI plus the visit’s dwell time dck(ω), which is the time the household spends actually at
the POI. Since we have assume POIs are symmetric within a category and neighborhood,
we have that dwell times dck(ω) are also equal to constants dck within each category and
neighborhood.

Households allocate their time to POI visits in two stages. First, they choose how to
allocate their POI visit time to each category of POIs. Second, they choose how much of the
time they have allocated to each POI category to spend visiting each POI in that category.
We introduce each stage of the household POI visit choice problem in more detail in reverse
order.

First, suppose household i with home neighborhood n has already allocated time T̃inc
to visiting category c POIs. We assume they then choose quantities of visits qinck(ω) to
category c POIs in neighborhood k to maximize the following CES utility function subject

26We also do not have access to data on expenditures at POIs either, although such data do exist for
POIs at which transactions occur.

27We do not include return travel time in the time cost of a visit, since it is possible the household visits
the POI as part of a chain of trips away from their home neighborhood. Miyauchi et al. (2021) and Oh
and Seo (2022) emphasize the importance of taking trip-chaining into account when modeling POI visits,
although according to Cook (2022), they are relatively rare. Our data do not contain the individual-level POI
visits necessary to measure chains directly. We leave possible extensions of our model that parsimoniously
allow for trip chains to future work.
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to total category-c POI visit time being below T̃inc:

U
(POI)
inc (T̃inc) := max

(q̃inck(·))k∈N

(∑
k∈N

∫
(vck(ω)q̃ijck(ω))

σc−1
σc dµck(ω)

) σc
σc−1

such that
∑
k∈N

∫
q̃inck(ω)

S∑
s=1

ws (tnks + dck(ω)) dµck(ω) ≤ T̃inc.

(5)

Since within each category and neighborhood, POIs are symmetric, the quantities of visits
qinck(ω) that solve the maximization problem in (5) are the same across ω, so we let qinck
denote the optimal quantity of visits to each category c, neighborhood k POI chosen by
household i living in neighborhood n. By standard CES logic, we have that σc > 1 is the
elasticity of time substitution between visits to category c POIs across space.

Next, we describe how household i living in neighborhood n allocates their total POI
visit time Ti across POI categories.28 In particular, such a household chooses category time
allocations Tinc to maximize the following Cobb-Douglas utility function subject to total POI
visit time across categories being below Ti, where C denotes the set of all POI categories:

U
(POI)
in := max

(T̃inc)c∈[C]

∏
c∈C

(
U

(POI)
inc (T̃inc)

)κic

such that
∑
c∈C

T̃inc ≤ Ti,
(6)

where κic are non-negative weights normalized to sum to one that correspond to the shares
of total POI visiting time Ti that household i allocates to category-c POI visits. As we will
see shortly, homogeneity in inner nest preferences across households enables us to collapse
the rich set of POI visiting options into a low-dimensional vector of “sufficient statistics”
that represent how accessible POIs of different categories are from a given neighborhood.
Heterogeneous outer nest preferences still capture realistic heterogeneity in POI visiting
preferences across households.

Under this model, household i in neighborhood n chooses to make the following quantity

28While we do not model how households trade off time spent on POI visits versus other uses of time, one
could easily write down an outer Cobb-Douglas utility nest that governs households’ allocation of total time
to POI visiting and other uses. Since given Ti, such a decision does not affect household i’s POI visiting
behavior or their choice of residence, we do not explicitly include this decision stage in our model.
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of visits to each category c, neighborhood-k POI:

qinck =
S∑

s=1

ws(tnks + dck)
−σcvσc−1

ck I1−σc
cn κicTi,

Icn :=

(∑
k′∈N

Mck′v
σc−1
ck′

S∑
s=1

ws(tnk′s + dck′)
1−σc

) 1
1−σc

,

(7)

where Icn is a time cost index measured in hours for visits to category c POIs from home
neighborhood n. Intuitively, demand for visiting a POI in a category and neighborhood
is increasing in the quality provisioned by POIs in that category and neighborhood and
decreasing in the expected time cost of visiting that POI. We have that household i living
in neighborhood n’s indirect utility from POI visits is given by

U
(POI)
in = Ti

C∏
c=1

κκic
ic I

−κic
cn . (8)

See Appendix D.2 for derivations of (7) and (8).

4.1.2 Residential choices based on POI access

We now integrate the POI visiting model described above into our hedonic residential choice
model (3) introduced in Section 3.2. While in Section C.1, we had no need to restrict
household i’s utility U

(-C)
i over non-street-traffic housing choice characteristics to estimate

their willingness to pay to avoid nearby street traffic, we now decompose U (-C) into two
additive components. The first is a neighborhood-specific POI visit utility component, and
the second is a component corresponding to observable housing option characteristics and
street-and-neighborhood unobservables. Concretely, we write household i’s utility from living
in housing option j can be written as follows:

U
(H)
ij := −βiCℓ(j) + γi log(U

(POI)
in ) + U

(A)
i (Aj, η̃ℓ(j)) + ξj.

Substituting the expression for household i’s indirect POI visiting utility into the expression
above, we have that household i gets the following indirect utility from choosing housing
option j:

U
(H)
ij = Ki − βiCℓ(j) − γi

∑
c∈C

κic log(In(j)c) + U
(A)
i (Aj, ηℓ(j)) + ξj − Pj, (9)
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where Ki is a collection of terms that don’t depend on which housing option household i

chooses.29

In (9), household i’s indirect POI visiting utility from housing option j is determined
completely by the bundle of travel time indices {In(j)c}c∈C that characterize POI access
from housing option j’s neighborhood n(j). As such, we can view households as making
direct choices over a low-dimensional “sufficient statistic” of a neighborhood’s POI access,
not intractably high-dimensional visit counts to every POI in the Boston CSA. This choice
problem simplification allows us to estimate households’ willingness to pay for POI access
hedonically. We rewrite household i’s hedonic indirect utility maximization problem directly
over housing choice characteristics (4) as follows:

max
(c,ι,a,η,ξ)∈X

ui(c, ι, a, η, ξ)− p(c, ι, a, η, ξ),

ui(c, ι, a, η, ξ) := Ki − βic− γi
∑
c∈C

κic log(ιc) + U
(A)
i (a, η, ξ).

Since there are 5,887 Census block groups in the Boston CSA, we assume households’ choices
over travel time index bundles are also effectively continuous. Then, given travel time indices
Inc for every category and neighborhood recovered using our POI visiting data, we can
identify household i’s taste for POI visits γi from household i’s first-order conditions with
respect to log(ιc):

∑
c∈C

[
∂ui

∂ log(ιc)

∣∣∣∣
x=XJi

− ∂p

∂ log(ιc)

∣∣∣∣
x=XJi

]
= 0

=⇒ γi =
∑
c∈C

∂ui
∂ log(ιc)

∣∣∣∣
x=XJi

=
∑
c∈C

∂p

∂ log(ιc)

∣∣∣∣
x=XJi

.

(10)

Given this result, we now turn to estimating our travel time indices along with the curvature
of the equilibrium price surface p with respect to these travel time indices.

4.2 Travel time preference estimation

Estimation of households’ preferences for visiting POIs proceeds in two steps. First, we
estimate the parameters of the POI visiting model that determine the travel time indices Inc
across each of the seven POI categories introduced in Section 2, as well as households’ het-
erogeneous preferences for different POI categories κic. Second, we estimate the derivatives
of the equilibrium price surface with respect to each travel time index and aggregate them
into estimates of γi according to (10).

29Specifically, Ki := log(Ti) +
∑

c∈C κic log(κic).
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4.2.1 POI visiting model components

To estimate the parameters of the POI visiting model described in Section 4.1, we first note
that, in our SafeGraph data, we observe noisy estimates Q̂nck of the 2018 total quantity of
visits Mck E[qin(Ji)ck | n(Ji) = n] by the average resident of neighborhood n to all POIs in
category c and neighborhood k, as well as the numberMck of category c POIs in neighborhood
k and the travel tnks and dwell dck times required to visit that POI in each traffic state s.
Assuming Q̂nck is an unbiased estimate ofQnck, we can use (7) to derive a conditional moment
restriction that identifies our travel time elasticities σc:

E[Q̂nck | M, v, t, d] =Mck E[qin(Ji)ck | n(Ji) = n, v, t, d]

=Mckv
σc−1
ck︸ ︷︷ ︸

exp(νck)

I1−σc
nc E[κicTi | n(Ji) = n]︸ ︷︷ ︸

exp(δcn)

S∑
s=1

ws(tnks + dck)
−σc

= exp (νck + δcn)
S∑

s=1

ws exp (−σc log(tnks + dck)) . (11)

(11) resembles the conditional moment restriction corresponding to a category-specific Pois-
son regression with two-way fixed effects, albeit with a mixture over the terms governing
responsiveness to travel times under different traffic states. We implement a computation-
ally efficient algorithm to estimate the within-category travel time elasticities σc and the
high-dimensional fixed effects νck and δcn that resembles the highly performant fixed-effects
Poisson regression algorithm underlying the fixest R package (Bergé, 2018). Given these
parameter estimates, we can back out the visit qualities vck up to a normalization from our
estimates of the travel time elasticities σc and fixed effects νck. Recovering these parame-
ters allows us to construct estimates of the travel time indices Inc. We provide details in
Appendix D.3.

To recover households’ heterogeneous preferences over POI categories, we assume all
households that choose to live in a Census block group have the same preferences for time
spent visiting POIs in each category. While such an assumption masks within-neighborhood
heterogeneity in households’ preferences, it still allows for rich variability in households
preferences across the 5,887 Census block groups in the Boston CSA. Under this assumption,
we can estimate the time T̂in(Ji)c household i choosing to live in neighborhood n(Ji) allocates
to visiting category-c POIs via a function of our existing parameter estimates; dividing each
by their sum across categories yields estimates of κic for each category. We provide more
details in Appendix D.3. In Figure A.4, we visualize the spatial distributions of κic for each
category across Census block groups.
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4.2.2 Hedonic willingness to pay for POI access

Armed with estimates of the travel time indices Inc characterizing accessibility of POIs in
each category c from each neighborhood n, we proceed to identify and estimate households’
willingnesses to pay for POI access. To do so, we use a similar identification strategy as we
did in Section 3.1 to identify the causal effects of streets’ monthly traffic on the prices of
homes on those streets.

In particular, we use our POI visit model parameter estimates to construct period-specific
travel time indices Inct, where we allow traffic state-specific travel times and the probabilities
of those states to correspond to the period t.30 We then estimate how changes, across Census
block groups, in category-specific POI access between 2010 and 2018 affect home transaction
prices after removing the effect of changes in own-street traffic exposure.31 Again, to address
the concern that changes in POI access within a neighborhood might be correlated with
unobserved changes in neighborhood desirability, we instrument for the travel time indices
Inct similarly to how we did in Section 3.1.1, namely with versions of the travel time indices
Ĩnct that hold traffic state-specific travel times fixed at their 2010 levels and only allow traffic
state probabilities to change over time.32

In practice, we impose additional functional form restrictions on the equilibrium price
surface for tractability. We decompose the non-traffic-exposure term p(−C) in (1) into a
product of unrestricted functions of each POI category-specific travel time index, as well
as an unrestricted function p(A) of housing unit j’s attributes, as well as street ℓ(j) and
municipality m(j)-by-year y unobservables:

Pjy = exp(ξjy)p
(C)
t(y)(Cℓ(j)t(y))p

(A)
y (Aj, ϕℓ(j), φm(j)y)

∏
c∈C

p
(I)
ct(y)(In(j)ct(y)).

Now, ξjy encapsulates unobserved, time-varying factors that affect housing option desirability
that differ at levels up to Census block groups.

To estimate the functions p(I)ct(y), we first divide each observed transaction price by our

30Because we only observe a single cross-section of POIs in 2018, when constructing these travel time
indices in each year, we hold the numbers of POIs in each neighborhood and category their visit qualities,
and their dwell times fixed at their 2018 values.

31We cannot directly relate prices with POI-visiting indirect utility U
(POI)
in(j) directly because POI-visiting

utility is comprised of both households’ homogenous preferences for POI access within each category and
their heterogeneous preferences across categories. However, Bajari and Benkard (2005)’s equilibrium price
surface existence theorem requires the price surface to depend on product characteristics that are experienced
in the same way by all households. Because households choose to live in locations that give them more POI
visiting utility given their preferences, the relationship between house prices and indirect POI visiting utility
will be dampened.

32Again, we use probabilities estimated using only roads outside the Census tract containing block group
n(j).
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Figure 4: The estimated distribution of average value of travel time per POI visit
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Notes: We present the distribution across households of their values of an additional hour of travel time on
average over their visits to POIs, as computed based on the heuristic procedure described in Appendix D.4.

estimate of the street traffic exposure term p
(C)
t(y)(Cℓ(j)t(y)) from Section 3.1. Then, we imple-

ment a similar nonparametric instrumental variables estimator with partially linear controls
to the estimator described in Section 3.1. We approximate the logarithm of each category-
specific price function term log p

(I)
ct(y) with a linear combination of flexible basis functions

of In(j)ct(y), and we instrument for these variables with higher-dimensional basis expansions
of our instruments Ĩn(j)ct(y) (X. Chen and Christensen, 2018). We then residualize prices
and these travel time index and instrument basis expansions using Generalized Random
Forest-predicted versions of these variables based on housing unit attributes as well as street
and municipality-by-year-level averages of the instruments and housing unit characteristics
for transacted units (Athey et al., 2019; Chernozhukov et al., 2018). As discussed in de-
tail in Section 3.1, doing so controls for time-invariant, street specific and time-varying,
municipality-specific unobserved heterogeneity (Arkhangelsky and Imbens, 2022, 2023). We
estimate the coefficients on the travel time index basis expansions via two-stage least squares
using the residualized prices, treatments, and instruments (X. Chen and Christensen, 2018;
Chernozhukov et al., 2018). Finally, we translate these price surface component estimates
into estimates of hedonic POI-visiting preferences γi by adding up derivatives of our estimates
of p(I)ct(y) across categories.

To summarize our heterogeneous preference estimates in an interpretable way, we com-
pute rough estimates of households’ values’ of an hour of travel time on average across their
visited POIs under our model, which we plot in Figure 4; see Appendix D.4 for details. We
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find that the median household’s value of travel time to POIs is around $41 per hour, with
the 10th and 90th percentiles of the distribution across households being $12 and $199 per
hour. To benchmark these estimates, we divide each household’s value of time estimate by
the median hourly household wage in that household’s chosen Census block group and plot
the resultant distribution in Figure A.5. We find that the median household has a value
of time at around 110% of their neighborhood hourly median wage, with 10th, 25th, 75th,
and 90th percentiles of 27%, 48%, 271%, and 511%, respectively. As discussed in Section
1,33 these estimates are broadly in line with the range of estimates from the transportation
and spatial economics literatures. However, our increased preference heterogeneity relative
to many existing approaches means that we find some households’ values of time that fall
slightly outside of the range of existing estimates.

4.3 Travel time effects of increased traffic volume

To translate increases in car trips on roads into welfare costs of congestion, we estimate the
empirical relationship between cars’ speeds on roads and the volume of traffic on those roads.
To do so, we follow Yang et al. (2020) and a rich literature dating back to Greenshields,
Bibbins, Channing, and Miller (1935) and posit a linear structural relationship between
traffic speed on a road and traffic density on that road, defined as the number of cars per
lane per kilometer and equivalent to traffic volume divided by traffic speed. We do so since,
in equilibrium, the same traffic volume can correspond to high or low traffic speed (Hall,
1996).34

In particular, we define monthly average car speed Vℓt and monthly average car density
Dℓt for road segment ℓ in period t as the traffic-state-probability-weighted averages of state-
specific monthly traffic speeds Vsℓt and densities for road segment ℓ in year t:35

Vℓt :=
S∑

s=1

wstVsℓt, Dℓt :=
S∑

s=1

wst
Csℓt

λℓVsℓt
· 1.36× 10−3 months

hour
, (12)

where λℓ denotes road segment ℓ’s number of lanes and we assume that monthly traffic
volume in a given state Csℓt is spread uniformly across lanes and time spent in that state
per month. Then we assume that average traffic speed Vℓt and density Dℓt are related via

33See Section 5.2.2 of Su (2022a) for a thorough review of different literatures’ estimates of similar quan-
tities. Because these literatures use different approaches for estimating value-of-time-like quantities, unified
interpretation across approaches is difficult.

34See Section I in Yang et al. (2020) and Appendix D.2 in Cook and Li (2023) for in-depth explanations of
this fact and the value of estimating congestion effects in terms of traffic density, not traffic volume directly.

35There are 730 hours per month, which means there are 1/730 = 1.36× 10−3 months per hour.
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the following linear function:

Vℓt = (b0 + bvV ℓ)︸ ︷︷ ︸
bℓ

Dℓt + (aℓ + ar(ℓ)t + ζℓt)︸ ︷︷ ︸
aℓt

, (13)

where we allow the slope bℓ to vary with ℓ’s speed limit V ℓ and assume the free-flow speed aℓt
(speed in the absence of any cars) is determined by the sum of a road segment fixed effect,
road type by period fixed effect, and a residual.

Estimating the regression specification (13) assuming ζℓt are uncorrelated with Dℓt given
fixed effects ignores the possibility that changes in speed on a road segment over time could
be correlated with changes in the desirability of driving on that road in equilibrium (e.g.
decreasing speed on a road leading fewer cars to use that road) (Akbar et al., 2023; Couture
et al., 2018; Yang et al., 2020). To overcome this challenge, we instrument for changes in Dℓt

over time using just the changes over time in traffic density due just to changes in the traffic
state probabilities and holding traffic density fixed in 2010, as in our hedonic valuations of
car traffic exposure and travel time earlier.

We then translate these effects of traffic density on speeds into effects of traffic volumes
on speeds similarly to Yang et al. (2020). Because velocity appears in the definition of
density (12), we solve each traffic states-specific congestion function for endogenous speed
Vℓs, choosing the solution in which traffic speed is decreasing in traffic volume:36

Vℓs(c) = aℓ + (1.36× 10−3)bℓ
c

λℓVℓs(c)
=⇒ Vℓs(c) =

1

2

(
aℓ +

√
a2ℓ + (5.44× 10−3)bℓ

c

λℓ

)
.

The inverse of Vℓts times the length Lℓ of road segment ℓ yields the time it takes to traverse
road segment ℓ.

In Figure 5, we plot the distribution of 2018 traversal time elasticities with respect to
monthly traffic volume across the Boston CSA’s road segments. These elasticities are small
in general, although they are larger than those implied by the congestion function estimates
from Yang et al. (2020).

5 Counterfactuals

Having estimated households’ preferences and roads’ congestion technology, we now study
the heterogeneous traffic costs incurred by incumbent residents from adding additional house-
holds to different locations across the Boston CSA. We then use these location-specific welfare

36As explained in Hall (1996), Yang et al. (2020), and Cook and Li (2023), traffic speed can be increasing
in traffic volume if traffic is so backed up that increasing speeds increases throughput of cars.
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Figure 5: The estimated distribution of congestion effects
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impacts to evaluate the traffic externalities caused by targeting a 10% increase in metropoli-
tan area population according to several heuristics akin to proposals by policy makers in
other metropolitan areas across the United States.

5.1 Simulating a new household’s traffic externalities

Adding a new resident to a street who drives does not just affect the other households living
on that street. Anyone living on the streets on which that new resident drives will be exposed
to that new resident’s car trips, and any households driving on the same streets will also
be slowed down by congestion caused by the new resident’s car trips. To simulate these
traffic externalities caused by adding a counterfactual new housing unit to a street ℓ, we
make several simplifying assumptions. First, we assume that the new household moving into
the new unit takes the same car trips to POIs as the other households living on that street.
Given that a household selecting to move into this counterfactual housing unit would likely
do so in part based on the POIs that are most convenient to visit from ℓ, such an assumption
is not unreasonable. However, if the housing unit were materially different from the existing
housing stock on street ℓ, e.g. a new apartment on a street with only single-family homes,
it might attract a household with different preferences for visiting POIs.

Second, we assume that the new household travels via public transit at the same rate
as incumbent residents on street ℓ. Recall from Section 2 that we use the share of adults
in ℓ’s Census block group that commute by car as our measure of the probability a given
household creates car traffic. As above, such an assumption is reasonable so long as the
arriving household’s taste for the new housing unit’s characteristics is not strongly correlated
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with their propensity to travel via public transit.
Third, we take a first-order approach to welfare analysis: we assume that in response

to a marginal increase in car trips through roads, incumbent households do not move, POI
quantities and visit qualities do not adjust as a result of the counterfactual housing unit be-
ing added, and households do not adjust their optimal, traffic state-specific car routes from
their homes to the POIs they visit. Given that the median household visits 60 POIs per
month and the median household lives on a street with around 7,000 monthly car trips, such
assumptions appear to be reasonable. However, when we study variants of Massachusett’s
MBTA Communities law that require municipalities to plan for a 10% increase in metropoli-
tan area population in Section 5.3, we will view our estimates of the traffic externalities
created by these policies as approximate extrapolations.

To define our measures of the welfare effects of adding a new household to a street ℓ, let
∆Cℓℓ′s denote the number of monthly car trips taken by a new household on street ℓ that
pass through street ℓ′ under traffic state s as they visit POIs. In addition, let N denote the
total number of households in the Boston CSA, and for a given partition of those households
into disjoint demographic groups, e.g. households in different income quartiles, let Gi denote
the demographic group to which household i belongs. We define the total welfare cost to
households in demographic group g from exposure to the additional car trips on their streets
generated by a new household on street ℓ as follows:

∆W
(E)
ℓg := N E

[
1{Gi = g} · βi

S∑
s=1

ws∆Cℓℓ(Ji)

]
.

The welfare cost consists of adding up households in group g’s welfare costs per additional
monthly trip multiplied by the number of monthly trips taken by the new household on
street ℓ that pass through affected households’ chosen streets under different traffic states.

To define the congestion welfare cost from a new household on street ℓ’s car trips due
to increases in travel times, let Rnks denote the sequence of road segments comprising the
fastest route traversed by a household traveling from Census block group n to Census block
group k under traffic state s. Then, we can define the total first-order travel time welfare
cost on households in group g caused by a new household on street ℓ as follows:

∆W
(T )
ℓg := N E

[
1{Gi = g} · γi

∑
c∈C

κic

S∑
s=1

∂ log(Inc)

∂tnks︸ ︷︷ ︸
↑ travel time effect on i’s utility

∑
ℓ′∈Rnks

−Lℓ′

V 2
ℓ′s

∂Vℓ′s
∂c

∣∣∣∣
c=Cℓ′

∆Cℓℓ′︸ ︷︷ ︸
↑ trips’ effect on travel time from n to k

]
.

Here, we combine our estimates of how each road segment’s traversal time is affected by an
increase in car trips down that road segment with our estimates of households’ preferences to
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minimize time spent visiting POIs. Finally, we define the total traffic externalities incurred
by incumbents in demographic group g due to adding a new household on street ℓ as the
sum of the two welfare costs defined above:

∆Wℓg := ∆W
(E)
ℓg︸ ︷︷ ︸

total exposure welfare costs

+ ∆W
(T )
ℓg︸ ︷︷ ︸

total congestion welfare costs

.

5.2 Traffic externalities from new households across space

We report statistics characterizing the distributions of traffic exposure and congestion exter-
nalities across potential locations for new households for both all households and different
household income quartiles in Table 1 and plot these distributions in Figure A.6. We find
that the median new resident causes $11, 127 in traffic externalities. However, that quantity
varies substantially across space: the 10th and 90th percentiles of the distribution of total
traffic externalities caused by a new resident are $5, 553 and $21, 795, respectively. Exposure
externalities also tend to vary more than congestion externalities across potential housing
locations: the standard deviation of exposure externalities across potential new housing lo-
cations is 7, 569, while the standard deviation of congestion externalities is just $2, 563. The
relative sizes of exposure and traffic externalities also do not vary in lock step across space.
In particular, 25% of potential additional residents would generate exposure externalities
at most half the size of the congestion externalities they would generate, while almost 25%
would generate exposure externalities at least twice the size of the congestion externalities
they would generate. These patterns are also broadly replicated when considering the wel-
fare impacts on households living in different quartiles of the household median block group
income distribution.

5.3 Evaluating metropolitan-area-wide planning policies’ traffic costs

Next, we aggregate these per-household welfare effects across locations into estimates of the
traffic externalities caused by variants of Massachusetts’ MBTA Communities law. Passed
in 2021, the law mandated that the 177 municipalities besides Boston served by the Mas-
sachusetts Bay Transit Authority (MBTA) modify their land use regulations to enable a
cumulative 10% increase in the Boston CSA’s housing stock.37 In particular, each munici-
pality served by the MBTA, or adjacent to an MBTA community, was allocated a number of
additional housing units they had to accommodate within their borders via changes to their
zoning code. These allocations were determined based on how central a municipality is in the

37Boston was supposedly exempted from the law since it had already made efforts to adjust its zoning
code to enable the construction of more housing (Mass Live, 2024).
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Table 1: Heterogeneity in a new household’s traffic externalities across locations

Quantiles

Welfare cost type Mean Std. dev 10 25 50 75 90

All households
Total $13,007 $8,342 $5,553 $7,917 $11,127 $15,579 $21,795
Exposure $7,359 $7,569 $1,790 $2,884 $5,112 $8,976 $14,838
Congestion $5,636 $2,563 $2,359 $3,728 $5,557 $7,344 $8,972
Exposure / Congestion 165% 229% 34% 55% 100% 187% 336%

Income: Bottom 25%
Total $1,252 $1,333 $510 $677 $961 $1,333 $1,978
Exposure $637 $1,288 $108 $177 $309 $548 $1,177
Congestion $612 $291 $282 $407 $567 $762 $996
Exposure / Congestion 129% 290% 18% 30% 54% 109% 249%

Income: 25% to 50%
Total $2,635 $3,518 $873 $1,169 $1,585 $2,427 $5,073
Exposure $1,656 $3,473 $189 $289 $498 $1,231 $4,089
Congestion $973 $459 $445 $672 $915 $1,207 $1,563
Exposure / Congestion 245% 627% 19% 30% 55% 158% 567%

Income: 50% to 75%
Total $3,732 $3,747 $1,105 $1,745 $2,589 $4,066 $7,611
Exposure $2,180 $3,587 $207 $386 $773 $2,250 $5,854
Congestion $1,544 $718 $620 $1,022 $1,502 $1,992 $2,474
Exposure / Congestion 171% 346% 16% 27% 56% 163% 432%

Income: Top 25%
Total $5,103 $5,402 $871 $1,546 $3,164 $6,581 $11,996
Exposure $2,625 $4,516 $64 $170 $618 $2,948 $8,033
Congestion $2,470 $1,516 $722 $1,233 $2,214 $3,510 $4,603
Exposure / Congestion 93% 179% 7% 12% 28% 99% 255%

Notes: This table reports summary statistics of the distributions of welfare costs on incumbent residents
from the traffic externalities caused by adding a new household to different locations across the Boston
CSA. Each potential new household location is weighted by the total amount of residential land along focal
street on which the new housing unit would be sited. For density plots of each type of welfare cost, see
Figure A.6.
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MBTA commuter rail network and the size of their existing housing stock (Massachusetts
Executive Office of Housing and Livable Communities, n.d.). Importantly, these zoning code
changes were required to be made solely on land within half a mile of a public transit stop.38

We present these allocations of units to municipalities along with eligible land within half a
mile of a public transit stop in Figure A.7.

We evaluate how consequential the decision by the Massachusetts State Legislature to
concentrate this increase in planned density near public transit was for incumbent residents of
the Boston CSA who have otherwise fought to avoid meaningful increases in density (Boston
Globe, 2021). To do so, we use our estimates of the traffic externalities caused by new
households from Section 5.2 to compute the total traffic externalities incurred by incumbents
if the housing units the MBTA Communities law aimed to encourage were actually built.
We then compare those costs to the total traffic externalities caused by a counterfactual
variant of the law that would instead spread each municipality’s allocated units across all
residential land in that municipality. Finally, we also evaluate another counterfactual policy
variant where we allocate each municipality’s housing units exclusively to residential land
along non-residential streets.39

In particular, for each policy variant, we assume that each municipality’s allotted units
are spread across residential land within their borders and within the area targeted by the
policy variant to achieve the minimum increase in density necessary to accommodate those
new units. In Figure A.8, we map these minimum density increases by Census block group
across the Boston CSA. Having allocated units to locations across the Boston CSA, we add
up the welfare effects computed in Section 5.2 created by each of these new units and report
our total traffic externality tabulations in Table 6.

We find that the MBTA Communities law’s allocation of housing units to locations near
public transit stops would cause $3.3 billion in traffic externalities. The law’s welfare impacts
are $820 million smaller than the $4.1 billion in welfare costs from traffic caused by the policy
that would densify all residential land. $500 million (64%) of these savings are driven by
lower exposure externalities. For both policies, around 65% of the total welfare cost is caused
by exposure externalities.

While this targeting of increased density to locations near public transit reduces total
traffic externalities from both exposure and congestion, it does so in a regressive fashion.
Compared to the uniform density increase policy variant, building near public transit in-

38The law also required that at least one of the zoning districts created to satisfy the law allow multi-
family housing to be built by right (Massachusetts Executive Office of Housing and Livable Communities,
n.d.).

39In the parlance of OpenStreetMap, we allocate housing units to residential land along roads with the
“Secondary” classification, e.g. Broadway Street in Cambridge, Massachusetts, or larger.
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Figure 6: Traffic costs of MBTA Communities law variants

Welfare cost (millions)

Density increase locations Total Exposure Congestion

All households
Everywhere $4,094 $2,633 $1,458
Near transit $3,273 $2,133 $1,137
On thoroughfares $2,696 $1,287 $1,408

Income: Bottom 25%
Everywhere $452 $278 $173
Near transit $551 $403 $148
On thoroughfares $386 $217 $169

Income: 25% to 50%
Everywhere $655 $429 $225
Near transit $547 $365 $182
On thoroughfares $462 $243 $220

Income: 50% to 75%
Everywhere $1,011 $618 $392
Near transit $758 $456 $301
On thoroughfares $661 $282 $378

Income: Top 25%
Everywhere $2,003 $1,212 $788
Near transit $1,462 $845 $614
On thoroughfares $1,298 $537 $756

creases the traffic externalities borne by households living in the lowest-income quartile of
Census block groups by 22%, while it decreases the traffic externalities borne by house-
holds living in the highest-income quartile of Census block groups by 27%. This increased
cost to lower income households is driven entirely by a $125 million increase in exposure
externalities.

More optimistically, we find that targeting increased density to residential land along
thoroughfares only causes $2.7 billion in traffic externalities, an additional $577 million
decrease in welfare costs over the original MBTA Communities law and a cumulative savings
of $1.4 billion in traffic externalities relative to increasing density across each municipality.
These savings are almost entirely driven by substantial decreases in exposure externalities,
as adding new units on thoroughfares causes only marginally smaller congestion externalities
than adding those units everywhere and therefore somewhat larger congestion externalities
than adding those units near public transit stops. Crucially, this density targeting policy
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decreases total traffic externalities for households living in Census block groups at all parts
of the income distribution relative to both alternative policy variants.

Finally, we consider a version of the MBTA Communities law’s allocations of new units to
municipalities that also requires Boston to increase its density. We allocate units to Boston
in accordance with the law’s guidelines and scale down other municipalities’ obligations pro-
portionally to ensure the same total number of units get built as in our other counterfactuals.
In Table A.9, we report the total traffic externalities caused by the different targeting rules
we considered before under this alternative allocation of units to municipalities that includes
units in Boston. We find that shifting new housing units towards Boston increases total
welfare costs slightly from traffic under all three targeting policies. Perhaps surprisingly,
despite fewer new trips congesting roads leading into Boston, total congestion externalities
only decrease by tens of millions of dollars across all three targeting policy variants, and
these savings are offset by increases in exposure externalities. Another important difference
is that, because much of the residential land in Boston is within half a mile of a public tran-
sit stop (as can be seen in Figure A.7), the welfare gains from building near transit relative
to uniformly are muted by the fact that the targeting policies’ welfare costs in Boston are
similar. As such, the gap in welfare costs between building new units near transit as stipu-
lated by the original MBTA communities law and building those new units on thoroughfares
is larger than it was when using the original MBTA Communities law’s unit allocations.
Otherwise, the broad incidence patterns across income groups are similar to those under the
counterfactuals based on the original law’s unit allocations.

Before concluding, we discuss several important caveats to this analysis. First, as dis-
cussed in Section 5.1, we do not account for households changing their chosen driving routes
in equilibrium, which would dampen the travel time costs for exposed households but expose
additional households to congestion on chosen alternative routes. We also do not accom-
modate nonlocal movement along each street’s congestion function in response to increases
in traffic volume, which, at least under the concave congestion function functional form as-
sumed in (13), would lead to larger welfare impacts. More broadly, we do not account for
general equilibrium responses to increases in population density like shifts in the locations
of and visit qualities provisioned by POIs across the Boston CSA. Increased demand for
POIs could spur POI entry near new residents, concentrating their car traffic more locally
and changing welfare effects in ways that are difficult to predict. While accounting for these
additional forces would yield more realistic predictions of the effects of these policies, we
leave doing so for future work.
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6 Conclusion

In this paper, we measure the spatially heterogeneous costs of traffic exposure and congestion
to households. We construct estimates of monthly car trip counts through every street in the
Boston metropolitan area using GPS data on household POI visits and households’ optimal
driving routes. We then take a hedonic approach to valuing households’ exposure to car
traffic on their streets, estimating the causal effect of increases in nearby traffic volume on
home transaction prices. Our nonparametric estimates indicate substantial heterogeneity
in households’ disutilities from traffic exposure, with the median household willing to pay
around $3.50 to avoid an additional monthly car trip on their street.

We also estimate households’ heterogeneous distastes for travel times to different cat-
egories of POIs using a structural model of households’ POI visit decisions. Under this
model, a household’s indirect utility from a neighborhood depends on a household-specific
weighted sum of neighborhood-level, category-specific “travel time indices” that capture the
visit-quality-adjusted difficulties of accessing POIs of each type. We again use nonparamet-
ric instrumental variables estimates to recover the causal effects of changes in these travel
time indices on house prices; translating these effects into households’ preferences shows that
households’ values of time also vary substantially.

Given estimates of households’ preferences and the effects of traffic volume on road speeds,
we simulate the heterogeneous welfare costs to incumbent residents from adding a new res-
ident and their associated car traffic to each location across the Boston metropolitan area.
We find that the traffic externalities caused by adding one new resident vary substantially:
the gap between the 10th and 90th percentiles is over $15, 000. Exposure costs account for
a majority of these externalities in many locations. Finally, we use our estimates to evalu-
ate the traffic externalities caused by variants of Massachusetts’ 2021 MBTA Communities
law, which required municipalities to increase housing density near public transit stations.
We find that targeting upzoning near public transit as specified in the law reduces exter-
nalities by around $820 million compared to uniform density increases, but that targeting
development to thoroughfares instead could save an additional $580 million.

Throughout this paper, we focused on the traffic externalities caused by adding new resi-
dents, we could use this same framework in future work to evaluate other planning decisions
made by policy makers. For example, we could combine our per-household welfare esti-
mates with a richer transit mode choice model to evaluate the traffic externality reductions
induced by new public transit infrastructure across space, or we could evaluate the traffic
externality reductions from locating POIs closer to the households that visit them most.
Both of these interventions have the potential to mitigate the traffic externalities caused

38



by new housing construction, and studying them could highlight complementarities between
planning policies that encourage new residents and policies intended to minimize their costs
to incumbents.
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A Additional figures and tables

Figure A.1: Trip frequencies by POI category across households
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Notes: We present the distributions of monthly visit counts across households to POIs in each of seven
aggregate POI categories, which we construct by grouping two-digit NAICS codes. The categories grouping
two-digit NAICS codes we construct are Industrial: 11, 22, 23, 31, 32, 33; Transportation: 48, 49;
Healthcare: 62, 81, 92; Offices: 51 through 56; Education: 61; Stores: 42, 44, 45; and Leisure: 71, 72.

Figure A.2: Distribution of own-street monthly car trip exposure
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Notes: In this figure, we plot the empirical distribution of monthly car trips down housing units’ streets in
the Boston CSA.
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Figure A.3: Effects of alternative increases in monthly trips on houses’ streets
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(a) Effects of an additional 3, 000 monthly trips
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(b) Structural function derivative (effect of one additional trip)

Notes: We present NPIV estimates of two alternative effects of increased nearby street traffic on home
prices in 2018, both based on the same estimation procedure described in Section 3.1. In Figure A.3a, we
visualize the effects of a 3,000 monthly trip increase in own-street traffic by baseline street traffic. In Figure
A.3b, we visualize the derivative of the price function p

(C)
2018, which is essentially equivalent to the effect of

adding one additional monthly car trip on a house’s street on that house’s price. In both figures, dashed
lines are 90% uniform confidence bands computed as in X. Chen and Christensen (2018) via a bootstrap
clustered at the street level. We instrument for changes in busyness as described in Section 3.1.1. We plot
the distribution of nearby monthly trips across in Figure A.2.
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Table A.1: Average effects of increases in nearby street traffic by quintile of baseline nearby trips

Baseline trips quintile Estimate Std. Err. 95% Conf. Interval 95% Simult. Conf. Int

IQR of monthly trips
Bottom 20% -2.91e-01 3.92e-02 [-3.67e-01, -2.16e-01] [-3.88e-01, -1.95e-01]
20% - 40% -2.33e-01 3.45e-02 [-3.02e-01, -1.64e-01] [-3.18e-01, -1.48e-01]
40% - 60% -1.64e-01 3.01e-02 [-2.22e-01, -1.06e-01] [-2.38e-01, -8.96e-02]
60% - 80% -5.01e-02 1.91e-02 [-8.84e-02, -1.19e-02] [-9.72e-02, -3.02e-03]
Top 20% -3.75e-04 5.73e-03 [-1.14e-02, 1.06e-02] [-1.45e-02, 1.38e-02]

3,000 monthly trips
Bottom 20% -6.95e-02 2.35e-02 [-1.15e-01, -2.39e-02] [-1.30e-01, -9.06e-03]
20% - 40% -4.36e-02 1.71e-02 [-7.72e-02, -1.00e-02] [-8.75e-02, 2.83e-04]
40% - 60% -4.61e-02 8.54e-03 [-6.30e-02, -2.92e-02] [-6.80e-02, -2.41e-02]
60% - 80% -1.21e-02 3.16e-03 [-1.83e-02, -5.90e-03] [-2.02e-02, -4.00e-03]
Top 20% -3.49e-04 7.15e-04 [-1.74e-03, 1.04e-03] [-2.18e-03, 1.49e-03]

Derivative
Bottom 20% -8.98e-05 2.86e-05 [-1.46e-04, -3.40e-05] [-1.62e-04, -1.73e-05]
20% - 40% -8.64e-06 8.59e-06 [-2.54e-05, 8.09e-06] [-3.04e-05, 1.31e-05]
40% - 60% -1.75e-05 3.81e-06 [-2.49e-05, -1.00e-05] [-2.71e-05, -7.81e-06]
60% - 80% -4.60e-06 1.10e-06 [-6.71e-06, -2.48e-06] [-7.39e-06, -1.81e-06]
Top 20% -1.37e-07 2.43e-07 [-6.09e-07, 3.34e-07] [-7.53e-07, 4.78e-07]

Notes: This table reports average effects in natural log points of different increases in monthly trips on
housing units’ streets on those housing units’ transaction prices. We consider adding the inter-quartile
range of trips, 3,000 trips (50 median drivers, each of whom takes 60 trips as seen in Figure 1), and one
additional trip, i.e. the derivative. Standard errors, confidence intervals, and simultaneous confidence
intervals are computed as in X. Chen and Christensen (2018) via a bootstrap clustered at the street level;
the simultaneous confidence bands’ simultaneous coverage guarantees hold across the average effect
estimates for different baseline street traffic quintiles within each intervention type. We instrument for
changes in busyness as described in Section 3.1.1.
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Figure A.4: Percent of value-adjusted time κic allocated to each POI category
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Notes: We present the value-weighted percentages of total POI visit time κic allocated to each of four
representative categories by block-group in the Boston CSA. These time shares κic are calculated as
described in Section 4.2.
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Figure A.5: Distribution of values of time in percentages of hourly wages
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Notes: We present the distribution of households’ inferred values of time as percentages of their respective
home Census block groups’ median household hourly wages, as described in Appendix D.4.
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Figure A.6: Distributions of welfare costs per new household

(a) Distributions of total welfare effects across all households by cost type
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(b) Distributions of total welfare effects by income group
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Notes: In Figure A.6a, we plot the distributions of welfare costs by type on incumbent residents from the
traffic externalities caused by adding a new household to different locations across the Boston CSA. In
Figure A.6b, we plot the distributions of the total welfare costs incurred by households living in Census
block groups in different quartiles of the across-block-group distribution of median household incomes. In
both figures, each potential new household location is weighted by the total amount of residential land
along focal street on which the new housing unit would be sited. We report summary statistics for these
distributions in Table 1.
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Figure A.7: New unit allocations to MBTA communities and land near public transit stops
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Notes: This figure visualizes each municipality’s allocation of new units they must accommodate via land
use regulation changes within half a mile of public transit stops under Massachusetts’ MBTA Communities
law. Areas outlined in red are within half a mile of a public transit stop. Data on municipalities’ new unit
allocations and eligible land near public transit stops can be found at Massachusetts Executive Office of
Housing and Livable Communities (n.d.).
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Figure A.8: Minimum density increases by block group for MBTA Communities law variants
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Notes: This figure illustrates the increases in minimum density within each Census block group under each
of the three policy counterfactuals we consider.
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Figure A.9: Traffic costs of MBTA Communities law variants including Boston

Welfare cost (millions)

Density increase locations Total Exposure Congestion

All households
Everywhere $4,341 $2,907 $1,431
Near transit $3,890 $2,705 $1,183
On thoroughfares $2,844 $1,512 $1,329

Income: Bottom 25%
Everywhere $516 $341 $175
Near transit $602 $447 $155
On thoroughfares $450 $284 $166

Income: 25% to 50%
Everywhere $708 $481 $227
Near transit $612 $416 $196
On thoroughfares $491 $280 $211

Income: 50% to 75%
Everywhere $1,089 $713 $375
Near transit $971 $665 $304
On thoroughfares $702 $350 $352

Income: Top 25%
Everywhere $1,999 $1,250 $746
Near transit $1,648 $1,039 $603
On thoroughfares $1,272 $572 $696

Notes: In this table, we report the total traffic externalities caused by variants of the MBTA Communities
law introduced in Section 5.3 where we assume Boston was also allocated housing units in accordance with
the MBTA Community law’s guidelines and the rest of the municipalities’ allocations were scaled down
proportionally to ensure the same 10% metropolitan-area-wide housing stock increase. Such a change to
the policy would require Boston to plan for around 50,500 additional units and would decrease other
municipalities’ obligations by 17.5%.
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B Details on traffic flow construction

We are not able to observe each household’s routing decision, nor are we able to observe the
full distribution of road speeds at the time that a given household is making a trip to a given
POI. What we do observe are the ventiles of the speed distributions for each non-residential
road in the Boston CSA in our TomTom data, as well as the associated number of cars
TomTom used to estimate those speed ventiles. We define 19 traffic states in 2010 and 2018
which are constructed by setting all roads in the Boston CSA to their associated ventiles of
observed speeds in that year. We assume that cars drive at the speed limit on residential
roads. We compute the fastest driving routes each household would take to reach the POIs
they visit under each of these 19 traffic states in 2010 and 2018, amounting to 47 billion
unique optimal routes.

While TomTom’s sample sizes are likely smaller than the actual numbers of cars driving
through the streets for which we have TomTom data, we will assume that TomTom’s sample
of drivers is representative of the population of Boston CSA. As such, TomTom’s sample
sizes should be proportional to the true traffic counts on the streets for which TomTom
provides road speed data. We use this assumption to estimate the relative frequencies of
these aggregate traffic states that best match TomTom’s sample sizes for the road segments
that we observe. Our estimated state frequencies need not be interpreted as the true empirical
frequencies of each of these traffic distributions, but rather as the frequencies with which
drivers choose routes similar to those consistent with each set of state-specific traffic flows.
As such, our estimated frequencies account of any misspecification in household’s beliefs over
which routes are optimal or suboptimality in households’ routing decisions.

Formally, let L denote the set of all road segments in the Boston CSA; then for any
housing unit j ∈ J and POI ω ∈ Ω in the Boston CSA, let qjωt denote the number of
monthly trips taken from housing unit j to POI ω, and let Rjωst ⊂ L denote the collection
of streets comprising the fastest route from j to ω in traffic state s in period t ∈ {2010, 2018}.
Then the total monthly traffic flow along street ℓ in period t is given by

Cℓts :=
∑
j∈J

∑
ω∈Ω

= 1{ℓ ∈ Rjωst}qjωt,

and the total monthly traffic flow along street ℓ in year t is given by

Cℓt :=
S∑

s=1

wtsCℓts.

Given TomTom’s sample sizes Ĉℓt used to construct their speed estimates for a subset of

54



Figure B.1: Inferred monthly traffic counts and matched TomTom sample sizes
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Notes: We visualize a sample of 5,000 estimated monthly traffic flows in 2010 and 2018 through road
segments for which we have reported TomTom sample sizes. Dashed lines have unit slopes and intercepts
fitted to the data from each year. The R2 from predicting log-sample sizes using these lines is 73%.

roads L̂, we construct estimates ŵt of the traffic state probabilities wt to match TomTom’s
sample sizes Ĉℓt via weighted sums of our inferred flows Cℓts across traffic states up to a
multiplicative factor in a squared error sense:

(ρt, ŵt) := argmin
w̃∈RS , ρ̃∈R

∑
ℓ∈L̂

(
ρ̃Ĉℓt −

S∑
s=1

w̃sCℓts

)2

: w̃s ≥ 0,
S∑

s=1

ws = 1, ρ̃ ≥ 0

 .

We present a scatter plot of TomTom’s sample sizes and our estimated monthly trip counts
on the same streets in Figure B.1.

C Exposure preference details

C.1 Hedonic preference estimation details

We let ̂
log p

(C)
2018 denote our nonparametric estimate of the effect function dictating how the

number of monthly trips through a home’s street affects that home’s value in 2018. For
houses that transacted in 2018, we can write their “potential” price given a counterfactual
quantity of monthly nearby car trips c as follows under the equilibrium price surface model
(1):

P̂j,2018(c) = Pj,2018 exp

(
̂

log p
(C)
2018(c)−

̂
log p

(C)
2018(Cj,2018)

)
,
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and we can estimate its derivative with respect to c like so:

∂P̂j,2018

∂c
= Pj,2018 exp

(
̂

log p
(C)
2018(c)−

̂
log p

(C)
2018(Cj,2018)

)
∂

̂
log p

(C)
2018

∂c
.

For housing units that did not transact in 2018 and rental apartment units for whom
transaction prices at the building level are not easily comparable to home prices, we pre-
dict their 2018 prices using a Generalized Random Forest fit to predict the logarithms of
2018 transaction prices minus predicted log-price effects from their nearby street traffic
̂

log p
(C)
2018(Cj,2018) (Athey et al., 2019). We use the same property and neighborhood charac-

teristics as we do when estimating our linearly separable controls via Generalized Random
Forests in Section 3.1, and we predict rental units’ prices as if they were condominiums.40 To
estimate unobserved housing qualities ξj,2018 for these housing units, we use the ξj′,2018 of the
nearest transacted unit j′ of the same housing type (single-family home or condominium).

Finally, we observe some households choosing to live on streets where our raw price sur-
face derivative estimates are decreasing, which would be inconsistent with those households
maximizing their utilities under our hedonic model (3) (Agarwal et al., 2023). To ensure
that our estimated price surface is consistent with utility maximization, we apply the post-
processing technique described in X. Chen, Chernozhukov, Fernandez-Val, Kostyshak, and
Luo (2021) to ensure the potential price functions P̂j,2018(c) are convex and thus consistent
with households maximizing utility (Agarwal et al., 2023).

C.2 Using second-order information to bound hedonic utility cur-

vature

In this section, we consider a generalization of the hedonic model of housing utility (3) that
allows for concavity in household i’s disutility from exposure to traffic on their street dictated
by the parameter µi ≥ 0:

U
(H)
ij := −βi

(1 + Cℓ(j))
1−µi − 1

1− µi

+ U
(A)
i (Aj, ηℓ(j), ξj). (C.1)

Note that, by standard properties of isoelastic utility functions, when µi = 0, (C.1) reduces
to the linear model of disutility from nearby traffic (3) and larger values of µi correspond
to utility functions with diminishing marginal cost from additional nearby traffic exposure;
as µi → 1, the nearby traffic disutility component of (C.1) approaches logarithmic utility
−βi ln(1 + Cℓ(j)).

40For the single-digit percentages of properties that are missing characteristics, we impute them using the
same characteristics of the closest housing unit of the same type (single-family home or condominium).
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For simplicity, suppose that for any bundle of other housing characteristics (a, η, ξ), a
housing option with any amount of street traffic c exists within each household’s choice set.
Then, it suffices to consider household i’s choice of c in isolation, writing the equilibrium
price function p as a function only of c and holding their other optimal housing characteristics
fixed. As such, we can define household i’s optimal choice C∗

i as follows:

C∗
i := argmax

c≥0
−βi

(1 + c)1−µi − 1

1− µi

− p(c). (C.2)

Note that, so long as p is twice differentiable, C∗
i must satisfy both the first-order condi-

tion
−βi(1 + C∗

i )
−µi − ∂p

∂c

∣∣∣∣
c=C∗

i

= 0 =⇒ βi = −∂p
∂c

∣∣∣∣
c=C∗

i

(1 + C∗
i )

µi , (C.3)

and the second-order condition

βiµi(1 + C∗
i )

−µi−1 − ∂2p

∂c2

∣∣∣∣
c=C∗

i

≤ 0. (C.4)

Substituting (C.3) into (C.4) and rearranging, we have that µi must satisfy the following
inequality:

µi ·

[
−∂p
∂c

∣∣∣∣
c=C∗

i

]
≤ (1 + C∗

i )
∂2p

∂c2

∣∣∣∣
c=C∗

i

.

So long as p is strictly decreasing (as should be the case for nearby street traffic), we can
then derive the following upper bound on µi:

µi ≤ (1 + C∗
i )

∣∣∣∣∣∂p∂c
∣∣∣∣
c=C∗

i

∣∣∣∣∣
−1
∂2p

∂c2

∣∣∣∣
c=C∗

i

=: µ
(L)
i .

If in addition we assume that p is convex in c to ensure that all households’ choices are
consistent with utility maximization (Agarwal et al., 2023), then the optimization problem
(C.2) is a concave maximization problem, so we can strengthen the second-order condition
(C.4) to hold globally:

βiµi(1 + c)−µi−1 − ∂2p

∂c2

∣∣∣∣
c=c

≤ 0, c ≥ 0,

which, after solving for βi as in the first-order condition (C.3) and substituting, implies that

µi

(
1 + C∗

i

1 + c

)µi

≤ (1 + c)

∣∣∣∣∣∂p∂c
∣∣∣∣
c=C∗

i

∣∣∣∣∣
−1
∂2p

∂c2

∣∣∣∣
c=c

, c ≥ 0,

where again, we assume that p is strictly decreasing.
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Figure C.1: Local and global bounds on utility curvature
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Note that since the function x 7→ xax is strictly increasing for all x ≥ 0 and a ≥ 1, for
each c ≤ C∗

i , there must exist a µi(c) such that

µi(c)

(
1 + C∗

i

1 + c

)µi(c)

= (1 + c)

∣∣∣∣∣∂p∂c
∣∣∣∣
c=C∗

i

∣∣∣∣∣
−1
∂2p

∂c2

∣∣∣∣
c=c

and µi ≤ µi(c).

As it happens, such a µi(c) has a closed-form expression in terms of the product log function
W , sometimes called the Lambert W function:

µi(c) = W

(1 + c)

∣∣∣∣∣∂p∂c
∣∣∣∣
c=C∗

i

∣∣∣∣∣
−1
∂2p

∂c2

∣∣∣∣
c=c

[log(1 + C∗
i )− log(1 + c)]

/ [log(1 + C∗
i )− log(1 + c)] .

While W does not have a closed form, it can be evaluated efficiently with a computer. To
construct an upper-bound µ

(G)
i on µi then, we can simply find the minimum value of µi(c)

over a fine grid of c ≤ C∗
i .

In Figure C.1, we plot our upper bounds on µi obtained using both bounding approaches.
Using just local information yields wide bounds on most households’ utility curvatures, failing
to rule out utility that is significantly more convex in monthly nearby traffic flows than
logarithmic utility for many households. However, bounds based on the global property of
price surface convexity yields much tighter bounds, ruling essentially any meaningful utility
curvature across all households.
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D Congestion preference details

D.1 A model of POI visit supply

Here, we describe the details of a monopolistically competitive POI supply model that is
consistent with our demand model. We assume category-c, neighborhood-k POIs ω have the
same fixed costs Fck of entry and the same constant marginal costs ψck of providing a unit
of quality to a visitor, and receive the same “price” pck of providing a visit to a visitor. We
put “price” in quotation marks given the discussion in Section 4.1 and conceptualize it more
generally as a vertical operationalization of the benefit a POI receives from a visit for the
sake of the model. Having entered, POI ω’s “profit” is then given as follows:

πck(vck(ω);ω) := (pck − ψckvck(ω))E[qin(Ji)ck(vck(ω);ω)].

POI ω then chooses vck(ω) to maximize “profit”:

0 =
∂πck(ω)

∂vck(ω)
= (pck − ψckvck(ω))E

[
∂qin(Ji)ck(vck(ω);ω)

∂vck(ω)

]
− ψck E

[
qin(Ji)ck(vck(ω);ω)

]

=⇒ (pck − ψckvck(ω))(σc − 1)vck(ω)
σc−2 = ψckvck(ω)

σc−1

=⇒ pck(σc − 1)vck(ω)
σc−2 = σcψck(ω)vck(ω)

σc−1

=⇒ vck(ω) =
pck
ψck

σc − 1

σc
. (D.1)

By (D.1), vck(ω) is constant across POIs ω within category c and neighborhood k. We note
that the ratio parameter pck/ψck is identified from (D.1) given vck and σc.

As for POI entry, we assume that category-c POIs enter in neighborhood k until their
profits are zero, i.e. until

Fck

ψck

=

(
pck
ψck

− vck

)
E[qin(Ji)ck(vck)]. (D.2)

Since there is not a closed-form solution to (D.2), solving for equilibrium POI entry must be
done numerically.
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D.2 Derivations of useful POI visit demand quantities

First, by standard results for CES demand,41 we have that

qinck(ω) =
Tinc

∑S
s=1ws(tnks + dck(ω))

−σc∑N
k′=1

∫ ∑S
s=1ws(tnk′s + dck′(ω))1−σcvck′(ω)σc−1dµMck′

(ω)
vck(ω)

σc−1. (D.3)

Next, since category-c POIs in k are assumed to be symmetric, qualities vck(ω) = vck, dwell
times dck(ω) = dck, and optimal demands qinck(ω) = qinck, we have that (D.3) becomes

qinck = Tinc

S∑
s=1

ws(tnks + dck)
−σcvσc−1

ck ·

(
N∑

k′=1

Mck′v
σc−1
ck′

S∑
s=1

ws(tnk′s + dck′)
1−σc

)
︸ ︷︷ ︸

=I1−σc
nc

−1

(D.4)

Again applying witin-category-neighborhood POI symmetry, the objective in (5) evalu-
ated at the optimizer (D.4) is given as follows:

Uinc =

 J∑
k=1

Mckv
σc−1
σc

ck

(
Tinc

S∑
s=1

ws(tnks + dck)
−σcvσc−1

ck Iσc−1
nc

)σc−1
σc


σc

σc−1

= TincI
σc−1
nc

(
J∑

k=1

Mckv
σc−1+(σc−1)2

σc
ck

S∑
s=1

ws(tnks + dck)
−σc

) σc
σc−1

= TincI
σc−1
nc I−σc

nc (σc − 1 + (σc − 1)2 = σc(σc − 1))

= TincI
−1
nc .

Applying standard results about Cobb-Douglas demand, we have that the optimizers
Tincs of the objective in (5) are given by

Tinc = κicTi (D.5)

Plugging (D.5) into (D.4) yields the expression (7). Finally, plugging (D.5) into the objective
in (6) yields the indirect utility expression (8).

D.3 POI visiting model estimation details

Having estimated the within-category travel time elasticities σc and the high-dimensional
fixed effects νck and δcn, we can back out the visit qualities vck up to a normalization from

41See e.g. these notes.

60

http://www.columbia.edu/~jid2106/td/dixitstiglitzbasics.pdf


our estimates of σc and νck:

vck ∝ exp

(
νck − log(Mck)

σc − 1

)
.

Given estimates of σc and vck, if we assume that households’ POI visiting preferences are
homogenous within each block group, then the following expression yields an estimate of the
total time household i who optimally choose to live in neighborhood n(Ji) spends on visits
to POIs in category c:

T̂in(Ji)c :=
1

N

N∑
k=1

Q̂n(Ji)ck

(
Mckv

σc−1
ck

S∑
s=1

ws(tn(Ji)ks + dck)
−σcI1−σc

n(Ji)c

)−1

.

Adding up these estimates T̂in(Ji)c across categories yields household-specific estimates of the
total time allocated to POI visits Ti. Finally, by standard Cobb-Douglas utility logic, we
can recover the share of time κic each household allocates to category-c POI visits:

T̂in(Ji)c = κic

C∑
c=1

T̂n(Ji)c =⇒ κic = T̂n(Ji)c

(
C∑
c=1

T̂n(Ji)c

)−1

.

D.4 Computing households’ average values of time

To compute a heuristic estimate of a household’s value of time, we first compute the total
derivative of household i’s hedonic utility from POI visits across all travel time scenarios:

dU
(T )
i

dt
:= −γi

∑
c∈C

κic

S∑
s=1

∂ log(Inc)

∂tnks
.

This derivative is a measure of the change in hedonic utility household i would experience
were we to increase the travel time for every POI visit they make by an hour every month in
perpetuity. We then divide this utility by the total number of monthly trips Qin(Ji)c taken
by household i living in neighborhood n(Ji) to construct a heuristic measure of household
i’s long-run value of an additional hour of travel time every month in perpetuity on average
across the POI visits they make. We then assume households discount the future at an annual
rate of 5%, therefore converting these long-run utilities into our estimates of households’
monthly values of time plotted in Figure 4 by dividing by 1/(1− 0.05) = 20 and then again
by 12 (the number of months in a year). To compare these values to households’ wages as
we do in Figure A.5, we divide our values of time by the median hourly household wages in
households’ chosen Census block groups, where we compute the median hourly household
wage in a block group by dividing the block group’s median annual household income by
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2, 000, a standard estimate of the number of hours a typical person works in a year.

62


	Introduction
	Related literatures

	Data and measurement
	Data sources
	Estimating monthly car traffic flows through streets

	Valuing households' traffic exposure costs
	Estimating the effect of traffic flows on property values
	Instrumenting for traffic flow changes
	Results

	Translating price effects into preferences: a hedonic model of residential choices

	Valuing households' time costs of congestion
	Model of demand for POI visits
	Choices of POI visits given residential choices
	Residential choices based on POI access

	Travel time preference estimation
	POI visiting model components
	Hedonic willingness to pay for POI access

	Travel time effects of increased traffic volume

	Counterfactuals
	Simulating a new household's traffic externalities
	Traffic externalities from new households across space
	Evaluating metropolitan-area-wide planning policies' traffic costs

	Conclusion
	Additional figures and tables
	Details on traffic flow construction
	Exposure preference details
	Hedonic preference estimation details
	Using second-order information to bound hedonic utility curvature

	Congestion preference details
	A model of POI visit supply
	Derivations of useful POI visit demand quantities
	POI visiting model estimation details
	Computing households' average values of time


